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ABSTRACT 

Glovers Pond is a temperate, dimictic lake, 1\ miles southwest 

of the town of Johnsonburg, Blairstown 7.5' Quadrangle, northwestern 

New Jersey. The Paleozoic Kittatinny, Jacksonburg, and Martinsburg 

Formations, in fault contart.: fTith each other, crop out in the vicinity 

of the lake. The lake has a maximum depth of 9.5 meters and occupies 

a glacially modified and dammed fault valley currently being infilled 

concentrically by .four types of sediment. Basim1ard these are: (1) 

peat, (2) marl, (3) "transitional", calcareous, organic-rich silt, 

and (4) gyttja. Glovers Pond is thermally and chemically stratified. 

The hypolimnion is undersaturated with Caco3 ; tl1is prohibits deposi­

tion of calcium carbonate in the profundal zone. Marl is deposited 

on a shallow shelf by chemical and biochemical precipitation of CaCO~ 
. J 

caused primarily by blanketing growths of _9ha..!:_~; these provide a 

habitat for several of the nine species of gastropods and the three 

species of bivalves which live in the lake. 

Five cor2s from the lake and contiguous bogs present a strati­

graphic record from late Wis(.off=;inan time t:- the present. Wood from 

the base of the marl gave a radiocarbon age of approximately 11,560 

years B.P.; the youngest peat was deposited 2,080 ~100 radiocarbon 

years B.P., indicating an average rate of horizontal infilling of 2.9 cm 

per ye.s.r. Chemical analyses of sc.dirnE-;nts show that twice in the past 

Caco3 was deposited in the deepest part of the lake implying two periods 

of warmer, drier climate in tl1e past. The second of these changes may 

represent the Hypsi.thermal Interval. 

xii 
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INTRODUCTION 

Purpose of the Study 

The primary purpose of this study was to interpret the geologic 

and limnologic history of Glovers Pond, from the time of its origin to 

the presenc, using as many parameters as reasonable within the limits of 

time and equipment available. The writer feels that a complete in­

terpretation of the environment can be made only when physical, chemical, 

geological, arid biological data are evaluated synchronously. Thus it 

was hoped that environmental changes recorded in the lake basin could be 

defined and interpreted to make clear the conditions of environmental 

evolution so that the information might be applied to.similar geologic 

problems in other areas. 

Location and Land Use 

Glovers Pond is a small lake located at lat 40°56'30''N., long 

74°53'30' 1 W., l.}. miles southwest of Johnsonburg in northwestern New 

Jersey. The lake is on property owned by the Synod of New Jersey of the 

U11itcd Presbyterian Church. Thesis research was confined to this proper-

ty which is presently used by the Synod as a sunnner camp. The land lies 

in Warren County within the Blairstown 7.5' Quadrangle. It is accessi­

ble from county road 519 between the towns of Johnsonburg and Hope. 

The land in this part of New Jersey is hilly with discontinuous 

bedrock outcrops covered by shrubs and mixed hardwood forest which limit 

exposures. Open areas, the rest1lt of clearing forests from the more 

1 
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level regions are largely underlain by glacial deposits. The lake 

lies in a bedrock basin bordered by peat bogs and marshes on the 

southwest, south and northeast. The north and northwest shore 

lies against a bedrock escarpment. An intermittent stream flows 

through a northeastern bog into the lake, and an equally ephemeral 

flow leaves the lake through a bog at the sou~hwest end. 

This part of New Jersey was originally settled by Moravian 

farmers in 1769. They tilled the land or planted apple orchards. 

Where land was unsuitable for farming, the forest was left until 

the late 1700' s when a small sawmill and millpond were established 

by danuning the outlet stream from Glovers Pond. Much, but not all, 

of the timber was then harvested. Since that time the forest has 

regrown and the apple orchards and fields are returning to natural 

conditions. 

In the 1920 1 s the Stevens Institute of Technology, Hoboken, 

New Jersey, began to purchase portions of the present property 

from various farmers in the area. The land was used by Stevens 

Institute as a summer study area for civil engineering students 

until 1953 when it was rented to the YMCA for use as a summer camp 

for two years. The property, now encompassing 356 acres, was 

purchased from the Stevens Institute by the Synod of New Jersey 

in 1959 for continued use as a camp. 

Previous Work 

The bedrock lithology, structure, and stratigraphy of northern 

New Jersey have been described in detail in early publications dating 

back to ct;ok in 1868. Kummel and Weller (1901) discussed the 
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Paleozoic strati.graphy of the Kittatinny Valley, and Kurn:mel (1900) 

made a thorough study of the Middle Ordo~ician limestones of the 

valley, including the area around. Johnsonburg in an attempt to 

locate limestone deposits suitable for use as cement rock. In 

1905 Kummel (p. 176-177) described some "white crystalline lime-

stones" of possible Precambrian age from Sussex and Warren Counties. 

Later work on the stratigraphy of the Ordovician rocks, particu­

larly the Jacksonburg L~reestone, was carried out by Miller (1937). 

This related New Jersey sections to those of easterr. Pennsylvania. 

The stratigraphy of the Cambrian section of eastern Pennsylvania 

that has direct bearing on the rocks of New Jersey was discussed 

by Howell, et al., (1950). Prouty (1959) showed sections of 

Jacksonburg equivalents in Pennsylvania but did not trace them 

into the area under consideration. Sherwood (1964) made a 

thorough study of the structure of the Jacksonburg Formntion 

in Northampton and Lehigh Counties in eastern Pennsylvania, 

making many interpretations which may be applied equally well 

to structural relationships in New Jersey. 

The paleontology of the region was summarized by Weller (1903). 

Some additions to his faunal lists for the Jacksonburg Limestone 

were made by Miller in 1937. 

The general geology of New Jersey was described by Widmer (1964) 

in connection with the state's tercentenary observation. The most 

recent geologic map of the state is the revision by Johnson in 1950. 

A most complete survey of the surficial deposits and glacial 

geology of the region was given by Salisbury (1902). He gave 

Jetailed descriptions of glacial sediments and geomorphic features 
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resulting from the presence of Wisconsin ice, including features 

near Johnsonburg and Southtown. Little major revision or addition 

to this work has been undertaken since. 

Herpers (1961) reported deposits of the Ogdensburg-Culvers 

Gap recessional moraine iq Sussex County. MacClintock (1940) 

described tills south of the Wisconsinan moraine in northern New 

Jersey. These, however, do not appear in the area of this study. 

The most useful work on the lakes of the area was that of 

Smith (1957). In this, chemical and se<limentological conditions 

in several lakes in Warren County were discussed but no mention 

was made of Glovers Pond. Frey (1963, p. 224) gave a brief 

synopsis of some New Jersey lakes, referring to White Lake in 

Warren County as, "one of the uncormnon marl lakes of the state." 

Glovers Pond falls in this group of lakes. 

The surface water characteristics for New Jersey were most 

recently described in detail by Anderson and George (1966). They 

listed conditions in the major drainage basins in northwestern New 

Jersey including that of the Pequest River into which Glovers Pond 

water eventually drains. Representative wells in the area were 

also sampled for water quality. 

Peat deposits were recognized early as a source of income in 

the state. They were surveyed extensively by Parmelee and Mccourt 

(1905). They gave chemical analyses of some peats sampled in the 

area of Johnsonburg with no specific reference to those of Glovers 

Pond. Kummel (1900) mentioned the bog and marl deposits of White 

Lake as a possible source of calcium carbonate while making his 

search for suitable cement rock locations. 
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Further intensive studies of the peat and related sediments 

were made by Waksman (1942) and Waksman, et .01_. (1943). They 

showed many stratigraphic sections of the bogs sampled, several 

of which are in Warren County, New Jersey. They discussed peat 

and marl deposition and included pollen diagrams from bogs, of 

which the nearest to Glovers Pond was White L~ke. 

A complete pollen study of bogs in High Point State Park in 

the northwestern corner of the state waE made by Niering in 1953. 

This sm1m1arized the post-glacial plant succession of the area. 

Field Work 

Research was begun in December of 1965 when a temperature and 

precipitation gauging station was established at the home of the camp 

Resident Manager. Readings were taken at this station throughout 

the year of 1966 and into April of 1967. The area was visited 

briefly in early April, early June and early August of 1967, as well. 

Field work in residence was begun during the last week of June 

and continued to the first week in September, 1966. During this 

time a reconaissance of the bedrock lithology, structure, and 

glacial geology was made. The main effort was concentrated in 

taking cores of the bogs and the 1RkP hottom, collecting grab 

samples of lake sediments, examining the present molluscan fauna 

of the lake, and studying the present physical and chemical condi­

tions of the lake water. 

A chemical laboratory was established near the lake for 

analysis of lake water. Samples were analyzed promptly after they 

were taken from the lake. Water and air temperatures were taken 

daily. 
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Three cores were taken in the bogs and two were taken from the 

lake bottom. Those in the lake were made from a floating platform 

anchored firmly at all four corners. When coring in the lake, the 

first one or two meters of the hole were cased to prevent loss during 

installation of new core liner. To augment the cores, posthole auger 

samples to a depth of five feet were taken in the bogs at numerous 

localities. 

Upon ~ompletion of field work all samples were taken to the 

University of North Dakota where they were analyzed for chemical, 

sedimentological, and paleontological factors. Details of the 

analytical methods employed will be discussed in Appendix A of 

this report. 
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GEOLOGIC SETTING 

.Physiography 

Glovers Pond is located on the southern edge of the Appalachian 

Valley and Ridge Province in northern New Jersey (Figure 1). This is an 

area of low hills and broad valleys which trend northeast-southwest. 

across the state and are governed by the bedrock structure of the 

province. The Kittatinny Valley and Kittatinny Mountain, a resistant 

ridge of Silurian conglomerate and quartzite, are the most important 

physiographic features of the region. 

Because the lake is located almost on the very edge of this 

province near the foot of Jenny Jump Mountain, a crystalline outlier 

from the Reading Prong of the New England Highland Province, the 

landscape immediately surrounding it is more hilly and irregular than 

many portions of the Kittatinny Valley. More complex structure has 

produced numerous truncated bedrock ridges, some of which are aligned 

contrary to the general northeast-·southwest trend of the province. 

The ridges have been steepened and modified by glacial erosion and the 

lo~l~~Js between them have been scoured and then partly filled by 

glacial action to produce the present topography. The structure and its 

glacial modifications control the drainage pattern locally. 

As indicated on the drainage map of central Warren County (Figure 

2), Glcvers Pond is the origin of one of the tributaries of Trout Brook. 

This flows eventually into the Pequest River and then to the Delaware 

River. The surface flow from Glovers Pond bas been intennittent for the 

7 
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last few years and has not supplied sufficient water to maintain the 

tributary, thus it is not a major source of surface water for Trout 

Brook. 

Stratigraphy 

Three formations crop out within the area of this study, and all 

are of early Paleozoic age. The outcrop pattern is one of truncated 

ridges and isolated J~dgcs surroti~ded by till which, accompanied by thick 

forest growth, obscures the structural and stratigraphic relationships 

of the units. The formations which crop out around Glovers Pond are (in 

descending order): 

Ordovician 

Cambrian 

Martfnsburg Shale 

Jacksonburg Limestone 

Kittatinny Limestone 

Kittatinny Limestone.--The oldest formation in the area, the 

Kittatinny Limestone, was named by H. D. Rogers in 1840 for exposures of 

limestone and dolostone in the Kittatinny Valley of northern New Jersey. 

As mapped by the New Jersey Geological Survey (Johnson, 1950) the for­

mation is of Cambrian and Ordovician age and is divided into three units 

as described generally below. 

The lower unit is designated as massive blue to blue-gray 11~estone 

with yellowish or silvery shale and is early Cambrian in age. This is 

said to be uncomformably overlain by upper ,Cambrian "light and dark, 

medium bedded limestones with cryptozoon heads." Above this, again 

unconfonnably, lie thin and thick bedded, gray or blue, cherty, rnagnesian 

limestones of early Ordovician age. 

At Glovers Pond the Kittatinny Fonnation is medium to thick bedded 

(Gray, 1955), medium gray, NS, to dark gray, N3, (Goddard, 1948) 
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dolostone. Frequently thin to medium beds of black chert occur inter­

bedded with the dolostone. Several outcrops contain numerous 0.5 to 1.0 

cm beds of chert appearing at regular intervals in the dolostone. Thick 

dolostone beds are predominantly fine to medium grained, crystalline 

dolomite. They weather to yellowish gray, SY8/l color. Differential 

weathering exposes very thin bedding planes within the more massive 

units. These are generally not visible on fresh surfaces. 

Several localities show thin, medium or thick 0CQS of fine to 

medium grained calcareous sandstone within the Kittatinny Formation. 

These beds are more resistant and may have as much as six inches of 

relief above the surrounding dolo_stone 

There are no fossiliferous outcrops of Kittatinny Limestone on 

the property. The contacts between this and the other formations are 

not exposed. On the basis of lithologic characteristics alone, rock of 

the Kittatinny Formation at Glovers Pond is placed in the upper unit, 

lower Ordovician cherty dolomitic limestone sequence, of the New Jersey 

Geological Survey terminology. 

Jacksonburg_formation.--The Jacksonburg Formation of Middle 

Ordovician age is a gray to black, silty, fine to coarse, crystalline 

limestone, argillaceous limestone, calcareous shale, and calcite­

cemented, dolostone conglomerate. 

Although the name Jacksonburg Limestone was first applied to 

these rocks by Kumrnel, et al. in 1908, it is obvious that because of 

the diversity of lithologies the tenn "Limestone" should be dropped 

from formal usage in this connection, and the unit he called the 

Jacksonburg Fomation. The section at Jacksonburg, New Jersey, which 

Kummel designated as the type section, had been measured and described 

earlier by Weller (1903, p. 18) as part of his study of New Jersey 
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paleontology. Though originally surveyed thoroughly for its potential 

as a cement rock and designated simply as "Trenton limestone" (Kumrr.el, 

1900), Weller's faunal studies (as interpreted by Miller, 1937, p. 

1695) showed that an unconformity exists between the lower 58 feet and 

the upper 77 feet at the type locality. 

Miller completed a detailed analysis of the stratigraphy of the 

Jacksonburg Formation in eastern Pennsylvania and north,;,;estern New 

Jersey. He described the occurrence of beds of co11t:,l 011,~rate co11ta.in­

ing, predominantly, clasts of dolostone in a calcium carbonate matrix. 

These units are found locally in New Jersey, and Pennsylvania. They 

are not restricted to the basal Jacksonburg, but rather occur at vari­

ous positions within the fonnation. 

Exposures of the conglomerate along county road 519 between 

Johnsonburg and Hape, and outcrops on the southern edge of the town of 

Hope, were visited during the 1966 field season. There the clasts were 

pebbles and cobbles, primarily of dolostone, in a calcium carbonate 

matrix. The unit had been jointed and many of the joints were filled 

with secondary calcite. These usually cut across clasts and matrix 

alike. Beneath the conglomerate at Hope was a bed of undeterrnined 

thickness of medium to coarse crystalline limestone in which many of 

the coarser grains were altered pelmato~oan col~mals. According to 

Miller, the base of the fonnation is marked by conglomerates with 

clasts that are more angular than in the local, higher conglomerates. 

At Glovers Pond rocks referred to the Jacksonburg Formation 

consist of grayish black, N2, to medium light gray, N6, crystalline 

limestones, argillaceous limestones, and subangular dolostone con­

glomerates with calcite cement. In all cases the outcrops of this 

fonnation are so badly distorted by subsequent tectonism that de-
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scription of bedding char~cteristics is not feasible. Nowhere was 

there more than fifteen feet of this fonna~ion exposed. 

Fossils were found at location 2 on the geologic map (Figure 5) 

at the northeastern end of Glovers Pond. The strong cleavage de­

veloped on the limestone at this location is shown in Figure 3. 

Preservation of the fossils at this outcrop was poor because of this 

distortion and no identifications of the fossils could be made. This 

sa:-'.<~ 0utcrop was visited by Kummel (1900, p. 89). Due to masking by 

glacial debris he waq not able to detennine the type of contact between 

the Jacksonburg and adjacent formations. The same holds true in this 

study, though some probable conclusions regarding the nature of the 

contacts will be considered later. No attempt is made herein to assign 

these rocks to upper or lower portions of the Jacksonburg Fonnation. 

Martinsburg Shale.--The thick beds of shale which underlie large 

portions of the Kittatinny Valley in New Jersey were early assigned to 

the Martinsburg, named by H. R. Geiger and A. Keith in 1891 for ex­

posures near Martinsburg, West Virginia, and were mapped as such by 

Kunm1el (1908). These shales overlie the Jacksonburg Formation and are 

of middle and late Ordovician age (Twenhofel, et al., 1954). Miller 

noted that though most previous workers had considered the Jacksonburg­

Marti~ctu~g contact to be transitional, he could find no evidence for 

this conclusion in New Jersey. On the contrary, the single good ex­

posure of the contact which he found appeared to indicate a discon­

formity between the two formations. The contact was not visible at 

Glovers Pond. 

The Martinsburg Shale crops out in isolated patches a few feet in 

the northeastern part of the study area. The shale is (medium dark 
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Figure 3. --Outcrop of the Jacksonburg Formati,Jn 
at the northeast Cl1d of Glovers Pond (loc a tion 2 i.n 
Figure 5). A sla.ty cle a.vage is shown here well deve l­
oped on limestone. 
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gray, N4,) strongly cleaved, fissile, and slightly calcareous. Most of 

the shale was mappe~ on the basis of shale fragments brought up from 

the till by posthole auger. At most, only six feet of this formation 

are exposed at the surface in the area. Because of the limited ex­

posures, no attempt was made to estimate what part of the formation is 

represented at Glovers Pond. Shale exposures are shown on Figure 4. 

Structural Geology 

Structural relationships in the Paleozoic sequence of northern 

New Jersey and eastern Pennsylvania have long puzzled geologists. 

Miller (1937, p. 1691), in discussing the various conclusions dra,m by 

other workers in the area, stated that "much of the region is structur­

ally so complex and paleontologically so barren that it would be sur-

prising if some conflicting interpretations had not arisen." In the 

same vein he quoted (p. 1691) this description given by Frederick Prime 

some fifty years earlier: 

"Level as the general surface may be, it is the 
planed-off section of as gnarled and twisted a piece 
of the earth's crust as can be found in any country. 
Although these plications are comparatively small 
they are of the same nature as the gigantic over­
thrown anticlines of the Alps and Apennines." 

This regional complexity has made interpretation of one small area more 

rlifficult than might be expected otherwise. 

The north shore of Glovers Pond is bordered by a southeast­

facing fault-line scarp on the Kittatinny Limestone. To the northwest 

of this fault the Kittatinny beds show a general, though consistent, 

strike ranging from N. 63° E. to N. 86°E. with readings of N. 73° E. 

being common. The beds dip to the north-northwest at angles of 50.5°to 

67.5°. Dips of 52° are frequent. Outcrops are discontinuous ridges or 



www.manaraa.com

16 

Figure 4.--Martinsburg Shale , poorly exposed in 
a field northeast of the lake (location 6 of Figure 5). 
Fissle character of the rock is evident. 
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isolated dolostone remnan~s surrounded by till. Some effort was made 

to determine whether or not the Kittatinny section was repeated on the 

northwest side of the lake but no evidence of repetition was observed. 

All three formations which occur in the vicinity are brought to 

the surface by faulting northea~t of the lake. None of the contacts is 

visible because of till and forest cover. Similarly the Jacksonburg and 

Martinsburg Formations here have been so badly cleaved and distorted, 

as -,.lready pointed out in Figures 3 and 4, that they lack the re­

sistance to glacial erosion possessed by the more competant dolostone 

beds of the Kittatinny. For this reason significant outcrops are 

difficult to find. All relationships shown in Figure 5 are therefore 

inferred. 

The fault contact between the Jacksonburg and Kittatinny 

Formations at location 1 may be placed within five feet, but the actual 

fault is buried beneath an old, tree-covered rock wall and glacial 

till. This is the same fault which fonned the scarp already discussed. 

North of location 2, the outcrop of Jacksonburg Fonnation seen in 

Figure 3, the shoreline swings northeastward for about 150 feet with no 

outcrops; it then turns northward again. At location 3, about 60 feet 

from this turning point, there is an outcrop of Kittatinny dolostone in 

which.:--.. lrirgc dead cedar tree stump is rooted (Figure 6). This is the 

beginning of a discontinuous ridge which extends to location 1 where 

the Kittatinny and Jacksonburg Fonnations have been described as almost 

in visible contact. The trend of the fault between the two has been 

taken as a line drawn from location 1 to location 2. This line bears 

N. 31 E. 

At both location 1 and 3 distortion has obscured the bedding of 
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Figure 6.--0utcrop of Kittatin­
ny Limestone (here dolostone) at loca­
tion 3 (Figure 5), the beginning of a 
ridge which extends to the concealed 
contact with the Jacksonburg Formation 
at location 1. 
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the J."lcksonburg Formation even in polished hand specimens. The 

cleavage surfaces at location 1 strike about N. 20° E and dip 80° to 

85°. Those at location 3 are nearly vertical and strike about N. 30° E, 

nearly parallel to the inferred strike of the major fault. Sherwood 

(1964, p. 39) found the bedding increasingly more difficult to disting­

uish the higher he worked in the Jacksonburg. The tendency to cleave 

also increased farther up the section. This may be one indication that 

these rocks are in the UVi1Pr part of t~e formation. If these rocks have 

c ieaved along bedding planes, the fonnation r..erc must ~)e nearly verti-

cal; if not, the beds are probably steeply dipping. 

Outcrops become sparse farther eastward from the lake where till 

masks the bedrock. Auger holes indicated that the rock changes from 

limestone to shale as shmvn on Figure 5. The Martinsburg Shale under-

lies most of the unused fields in this inmediate vicinity. It crops 

out only toward the northern edge of the property where it nears the 

major northeast trending fault. At location 4 it was seen at the 

surface. There the cleavage is nearly verti6al and trends approxi-

o 
rnately N. 35 E. 

The contact between the Martinsburg and Kittatinny Fonnations is 

hidden. It lies in a low area formerly used as a fann road but which 

is now only a foot path. If this slight valby is followed northward 

to a narrow gully at location 5, the shale and dolostone may be seen 

only fifteen feet apart. The cleavage on the shale is dipping about 

0 o a 
35 E. and N. The strike of the shale swings from N. 37 W. to N. 50 

E. in the space of thirty feet giving the appearance of a synclinal nose 

in the shale butted against the dolostone and having its axis plunging 

north-northeast. Because the outcrop is so badly cleaved and weather-



www.manaraa.com

• 

21 

e~, bedding was not determined. Thus the true attitude of the 

structure is here left to question. 

Southeast of the lake at locality 6, the Jacksonburg is re­

presented by one outcrop of conglomerate with angular dolostone clasts 

in a calcium carbonate matrix. This has been highly distorted so that 

the outcrop has very little appearance of conglomerate. Polished 

sections easily revealed the nature of the rock. 

Just west of this point the Jacksonburg is again in contact with 

· the Kittatinny although the contact is not v:i.sible. From here to the 

southwest corner of the property all bedrock is the Kittatinny For­

mation. The structure of these rocks is quite different from the 

Kittatinny on the opposite side of the lake. Here the beds show no 

consistent strike or dip trends between various outcrops. Rather there 

are numerous changes of dip indicating the presence of many minor 

structures within the formation. At location 7 a distorted anticlinal 

fold with a radius of ten or twelve feet may be seen apparently dis­

connected from surrounding structures. 

There are probably many small faults and folds within the for­

mation on this side of the lake. These would account for the diffi­

culty in correlating sections even a few tens of feet apart. It would 

require highly detailed mapping if at all possible, to interpret all 

the minor structures, and this was not the primary aim of the present 

work. 

In Figure 5 all formations have been shown with fault contacts. 

As indicated these faults are evident in some cases, as at locations 1 

and 4, and must exist, though they are hidden. In others there are no 

outcrops nearby and the relations are open to greater question. The 
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contact of the Jacksonburg with the Martinsburg need not be a fault in 

order for these formations to be positioned as shown. Kurnrnel (1900, 

p. 86) and Johnson (1950) showed it as an inferred depositional 

contact. There is no direct visual evidence to support either opinion. 

It is probable, however, that, because of the obvious magnitude of 

tectonic activity in the area, and because of the demonstrated relative 

incompetence of these two formations, and becai.1se of the way the areal 

exposure of the Jacksonburg as mapped appPars to pinch and thin against 

the Martinsburg near location 5, the contact is again a fault plane. 

The same holds true for the Kittatinny-Jacksonburg contact in the same 

area east of the lake. 

Due to the concealed faults and the discontinuous outcrop 

pattern, no definition of the type of faulting has been made. Sherwood 

(1964, p. 34) found mainly high and low angle thrust faults, and ''cross 

faults" with undetermined movement to be most conunonly associated with 

the Jacksonburg belt. He found normal faults to be rare. These find­

ings are probably equally valid in New Jersey. 

The only estimate of the amount of throw on these faults that can 

be made from relationships in the area is taken where the Martinsburg 

and Kittatinny Formations are in juxtaposition at location 5. Here the 

Jacksonburg Limestone is completely absent. At its type section the 

Jacksonburg is at least 135 feet thick though the top and bottom there 

are inferred. In Pennsylvania, Sherwood indicates as much as 1000 feet 

of Jacksonburg Limestone may be present. At Glovers Pond there appear 

to be at least 200 feet of this formation at the surface (though this 

may, and probably does, include some repetition of section). To bring 

the Kittatinny and Hartinsburg formations into juxtaposition would re-
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quire faulting out at least 135 feet, at most 1000 feet, or locally 

200 feet of the Jacksonburg Limestone. 

As demonstrated, the structural relationships at Glovers Pond are 

indeed as complicated as any in the surrounding area. Their conceal­

ment by glacial deposits and forest, and the irregular distribution of 

outcrops make greater evaluation of structure imprudent at present. 

Glacial Geology 

Glovers Pond lies five miles north of the yoL1ngest terminal 

moraine, taken to mark the farthest advance of Wisconsin ice in New 

Jersey, as mapped by Salisbury in 1902. Older dissected tills and 

boulder fields exist south of this moraine. These have been discussed 

by Salisbury, MacClintock (i940), and Flint (1957) and are thought to 

be pre-Wisconsinan. They, however, do not occur in the study area . 

Local glacial features.--Glacial features and deposits for the 

locale are described adequately by Salisbury (1902, pp. 340-1, 322-3, 

399, 400, and 447). He found that the valley of Bear Creek which flows 

through Johnsonburg and east of Glovers Pond is occupied by ''stratified 

drift" and kame deposits. He attributes the present course of the 

stream to a "line of sinks" caused by melting of covered, or partially 

covered, blocks of stagnant ice. T~i: stream passes Glovers Pond about 

0.6 miles to the northeast making a semi-circle around the lake. It is 

not directly related to any features there. The stratified sediment 

filling this valley is at least 40 feet thick as shown by data from the 

water well drilled at the Johnsonburg Hotel. 

Salisbury (p. 340-1) gives some trends of glacial striae taken 

near Johnsonburg. The location nearest Glovers Pond is 1\ miles south­

east of Johnsonburg on a limestone outcrop where the striations trend 
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S. 15° E. 

Glacial features at Glovers Pond.--Till at the lake is clayey 

with pebbles and cobbles of Jacksonburg Limestone and Martinsburg 

Shale, and with less numerous cobbles and boulders of Kittatinny Lime­

stone, Shawangunk Conglomerate, and assorted crystalline and metamorphic 

rocks of unknown source. In most cases the upper three to five feet 

have been thoroughly oxidized. 

Nn striae were seen in the area; however, the effects of ice 

movement south-southeast are manifest by the over-steepened ap~earance 

of many of the bedrock outcrops. The north-northwest dip of the 

Kittatinny Limestone allowed plucking to occur easily on the southeast­

facing outcrops causing many to have roche moutonnee configurations. 

This is especially true along the northern shore of the lake and bog 

where several of these apparently plucked surfaces may be seen. The 

steep face on the Jacksonburg outcrop (Figure 7) is interpreted as the 

result of this ice activity. 

The most prominant feature of glacial deposition is a low, linear 

hill of glacial debris which lies along the landward side of the bog at 

the southwest end of the lake. This feature forms a broad, partially 

tree-covered rise as viewed from the lake (Figure 8). It is composed 

of ~lnJ, sand, gravel, cobbles, and boulders and resembles till. The 

boulders are up to three feet in diameter. Cobbles and boulders re­

present all lithologies previously mentioned. Locally derived 

lithologies predominate, though the largest boulders and cobbles are 

generally igneous and metamorphic erratics, obviously transported some 

distance. 

Apparently this is the same feature which Salisbury (p. 447) des-
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Figure 7 .--Gl acially plucked hill of Jacks on­
burg Forma tion at location 2 (Figure 5 ) on the nort~­
e ast end of Glovers Pond . 

F i gure 8. --Vi.e.i:.v of the · so1.1the2-st end of Glovers 
Pond . 1: e heavily t ree-covered rid g~ is interpreted to 
be a crevasse . filling or kame . The hill3 behind are 
part of the Jenny Jump }iountain crystalline ou t lie r . 
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cribed as one of the rare eskers in New Jersey. In his words the 

esker lies: 

" ... north of South town and sout.hw·est of 
Glovers Pond. Its length is 350 to 400 yards, 
its width 40 to 50 yards, and its height 5 to 
15 feet. To the north it ends sharply at the 
swamp @lovers Pond bogfJ; southward it fades 
away on the hillside. Its surface is cobble 
strewn." 

This is one of four supposed eskers described for New Jersey. 

Examination of this deposit in a borrow pit use~ by the caillp as a 

source of road material shows that the deposit lacks distinguishable 

stratification. Upon close inspection, however, a visual impression of 

alignment in the clays and an orientation of the long axes of elongate 

shale and limestone pebbles suggests that the deposit does have some 

water-laid or compaition characteristics. There is absolutely no indi-

cation of sorting, winnowing, or transport from the original site of 

deposition unless this occurred by mass movement. These characteristics 

are not consistent with the interpretation that this body is an esker. 

There are two other possible explanations of the origin of this 

deposit: 1) a recessional moraine, and 2) a crevasse filling or kame. 

Recently Herpers (1961, p. 45) described the "Ogdensburg-Culvers 

Gap Moraine", a recessional moraine in Sussex County, New Jersey. The 

moraine was said to be a ridge, chiefly of sand, gravel, cobbles, and 

boulders, from a few to fifty feet high, and a few hundred feet to two 

miles wide. It has a huwmocky surface and is frequently discontinuous 

against rock ridges which run contrary to its course. The feature is 

said to contain little true till though its lithology is variable. 

This work significantly points out that both recessional (active) and 

stagnant ice features are to be expected in New Jersey where primarily 
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stagnant ice features have been described previously. 

It is possible, then, that the ridge at Glovers Pond may be a 

poorly developed recessional moraine. It was, however, not traced by 

Salisbury any farther than the bog. The short extent and relative 

narrowness of the body tend to make its origin as a recessional moraine 

doubtful. They suggest, rather, that the feature is a crevasse filling 

or a related kame-like deposit that has been collapsed, or let down, 

intu pl~ce thus destroying any superficial stratification that may have 

existed due to periociic deposition. 

Finally, it should be noted that the entire shore of Glovers Pond 

is ringed by erratic boulders such as those shown in Figure 9. In most 

instances these are masked by dense vegetation, but they are present 

around the entire lake shore. Their significance is discussed under the 

section entitled Origin and Glacial History of the Glovers Pond Basin. 
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Figure 9.--Lag depos it of glacia l erratic boul­
ders at the northeast end of Glovers Pond. Erratics of 
this type encircle the lake basin and indicate erosion 
of the shore during a high~r stand of the lake. 
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PRESENT ENVIRONMENT 
OF GLOVERS POND 

Meteorology 

The climate of northern New Jersey was described by Trewartha 

(modified from Koppen in G00Je, 1953) as a humid continental forest 

climate with warm sununers. The mean annual temperatu!."e and the average 

annual precipitation at Newton, New Jersey, about 10 miles northeast of 

Johnsonburg, are 49.6 °F, and 44.79 inches respectively (U.S. Weather 

Bureau, 1962). 

is about 27 ° F 
' 

The mean winter temperatur2 for this part of the state 

0 whereas the normal summer temperature is about 70 F, as 

interpreted from isothermal maps (Visher, 1954). This part of the state 

has an average annual frost-free period of 120 days, (Kennedy, 1963). 

Because the area surrounding Johnsonburg is a hilly upland 

region, individual valleys among the hills may undergo climatic iso­

lation which, to a small extent, establishes loc~l "microclimates" 

during some parts of the year. Glovers Pond is such an isolated area 

and is subject to slight variations from the "normal" weather of the 

region. This is particularly true with rega:rd to summer precipitation. 

In order to investigate the effects of local precipitation on 

Glovers Pond a rain gauging station was established on the property 

during the year 1966. The total precipitation for Glovers Pond in 1966 

was 32.1 inches. The greatest accumulations occurred during the months 

of February, May, and September, whereas June, July and November had the 

smallest accumulations. A comparison of the monthly precipitation at 

29 
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Glovers Pond with the ten year average (Figure 10) given by the U. S. 

Weather Bureau (1962) shows that only May and October could really be 

considered normal for the area. However during 1966 and for the four 

years preceeding 1966, New Jersey and the surrounding states had been 

undergoing a rather severe drought. This accounts for the low figures 

during the summer ,nonths, but it does not account for the very uneven 

distribution of precipitation during the rest of the year. This is 

better expl2ined by variations in the ability of preci.pitation-produc­

ing storms to reach the area. 

During the sunmer months, most of the rain falls from thunder-

storms, some of which are quite violent. Because of its topographic 

position and shelter by mountains on the north and northwest where most 

thunderstorms originate, Glovers Pond is often left untouched by these 

summer rain producers although areas only a few miles away may receive 

several inches of rain. It is possible that to a lesser extent, similar 

conditions cause abnormalities in the precipitation throughout the year 

and thus are partially responsible for the deviation from the pattern 

in the iwJUediate area. 

This "microclimate" has a distinct bearing on the level and 

trophic conditions of the lake since precipitation on the draiuage 

basin control.s the water level to a great extent. This is shown by the 

fact that the lake lost almost a foot of water in 1961 that was not re-

gained until the suruner of 1967 when heavy rains fell. The lake fluctu­

ated another 10 to 12 inches each summer'during this period depending on 

local rainfall conditions. The drought thus had a marked effect on the 

condition of the lake and surrou.nd ing land. 
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Figure 10.--Precipitation data for Glovers Pond, 1966, compared 
with 10-year mean of U. S. Weather Bureau (Newton, New Jersey station). 
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Morphometry 

Bathymetric studies of Glovers Pond were made with a Bendix DR-2 

transistorized depth recorder and with line 8oundings taken during the 

process of sampling bottom sediments. The depth recorder produced con­

tinuous profiles of the bottom of the lake. These profiles and sound­

ings were used to construct a bathymetric map (Figure 11). 

The lake is partially bordered by a shallow shelf (Figure 12) 

which g~~erally reaches a depth of 1.5 meters before dropping off 

steeply into the deeper jasin. Where the shelf is not present, as along 

the north shore, the basin slopes away steeply from the waters edge. 

Much of the shqreward edge of the shelf was subaerially exposed during 

the summer of 1966 due to the lowered lake level. 

From the shelf edge the bottom drops off abruptly to a depth of 

4 or 5 meters. From the base of the shelf to the center of the basin 

the bottom slope is much more gentle. The maximum depth of the basin is 

9.5 meters. Other morphometric parameters are given in Table 1. 

About 14,550 square meters, or more than one quarter of the sur­

face area of the lake, is underlain by the shelf as shown by the hypso­

graph in Figure 13. This large proportion of shallow water is of prime 

significance to the biologic and sedimentologic processes currently 

taking place in the lake, and the evolution of the shelf has been a 

major part of the sedimentologic history of the lake. 

Another useful morphometric parameter is the shoreline develop-

ment, DL (where DL= ~-, Hutchinson, 1957, p. 166) is an approxi-
2Vir A 

mation of the configuration of the shoreline relating the length of the 

shoreline to the circumference of a circle of the same area as the lake. 

A circular lake thus approaches a value Dt.=l whereas more irregular 
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TABLE 1 

MORPHOHETR:'::C !:' 1\'T'A FOR GLOVERS POND 

Parameter Value 

Surface area ........ 54,343 sq m 

Shoreline length ..... 1,360 m 

Mean depth ............. 4.8 m 

Maximum depth .......... 9.5 m 

Maximum length ......... 426 m 

}1ean breadth .............. 127 m 

Maximum breadth ......... 183 m 

Volume ............. 264,260 cu m 
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Figure 11.--Bathymetric map of Glovers Pond. 
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Figure 12.--Looking northeast at the shorewa rd 
edge of the sha llow shelf e x posed during the dry sum­
mer of 1966. A white st a ke indicates the position of 
station Lk-2 (Figure 23) where water and sediment 
samples were t a ken. 
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Figure 13.--Hypsograph showing what percent of the total area 
and total volunit::. of the lake basin is represented by the area and the 
volume of each one-meter interval of depth in Glovers Pond, New Jersey., 
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lakes have higher values of D1. .. The shoreline development of Glovers 

Pond at the present time is 1.65. This is a quantitative statement of 

the fact that the present lake has a smooth shoreline nearly devoid of 

embayments. Such a shoreline is in an advanced stage of development, 

(Reid, 1965, p. 34). 

Physical Limnology 

Wind, ~1.:.1ves..2_~E19-~urrents. --No quantitative values for wind 

velocity were obtained at Glovers Pond. Estimates of velocity and 

direction were made, however, each time that samples were taken for 

water analysis. 

Because the lake basin lies between forested bedrock ridges it 

is protected from wind action to a great extent. Wind can produce 

significant action only when it blows from the less sheltered south­

western end of the lake. During June, July, and August the wind 

begins to blow from the southwest at about 11:00 A.M. each day as a 

slight breeze. This increases until the velocity has reached 3, or 

occasionally 5, miles per hour by 3:00 or 4:00 P .. M., at which time 

the wind dies and the lake becomes calm. Only during summer thunder­

storms does the wind velocity greatly exceed 5 mph. 

This predominant sununer breeze from the southwest has the full 

fetch of the lake and is strong enough to produce some slight wave 

action. Waves of a few inches in height are generated under these 

conditions. Such wave action does cause some water to pile up at the 

northeast end of the basin, and this may, in turn, initiate a return 

current beneath the surface. Such a current was never identified or 

measured directly, but it may have been responsible for some of the 

irregularities in .the temperature curves which will be discussed later. 
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Sources of water.--There are two principal sources of water for 

Glovers Pond. One source is ground water entering the system througl1 

springs; the other is precipitation falling on the surface of the lake. 

Little of the summer precipitation reaches the lake as runoff. Spring 

melt water, however, does reach the lake. 

Water supplied by springs is the most important constant water 

supply. Several springs emerge in the bog at the northeast end of the 

lake, and these produce a small brook which flows into tbe lake al the 

surface when the water table is high enough to permit (Figure 14). At 

other times the same springs serve to maintain the water table in the 

bog and to supply water to the lake by subsurface flow. There is also 

evidence for the existence of other springs along the north wall of the 

lake itself. This will be discussed later. 

- The spring brook ceased flowing at the surface on July 11 during 

1966. Cores and auger holes taken in the bog during the remainder of 

the year continued to strike water at 0.3 to 0.8 meters below the 

surface. This water was flowing slowly through the bog. The water 

level of the lake dropped slowly during the summer due to the drought, 

but flow continued from the bog to the lake throughout the surnmer as 

ascertained in shallow auger holes. No measure of volume of flow to 

the lake was made, however. 

During the year 1966 a total volume of 44,452 cubic meters of 

precipitation fell on the lake surface. Rain <luring the three months 

of June, July, and August, however, contributed only 5,978 cubic meters 

of water to the lake surface, while, in the same period, the lake level 

dropped about 0.30 meters (Figure 15). A water level change of this 

amount would equal a volume of about 14,100 cubic meters of water evapo-
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Figure 14.--The spring brook flowing into the 
northeast end of Glovers Pond during December, 1966. 

Figure 15.--The northeast shoreline of Glovers 
Pond showing the forme r high-water mark of the summer 
on plant stems and the low water stand in late August, 
1966. 
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rated from the lake. 

These conditions, which had prevailed since 1963, were not re­

peated in 1967, however. During the su1mncr of that year rain was more 

frequent, and the lake level actually rose almost 12 inches. Early in 

July of 1967 a single storm produced nearly 6 inches of rain. This was 

followed 2 days later by another of about 4 inches. When the writer 

visited the area on August 23, 1967, these twu stonns along with average 

rainfall for the summer had contributed enough water so that the former 

millpond along the outlet stream held more than 4 feet of water, and the 

stream was draining it through the old earth dam. At this time approxi­

mately .57 cubic feet per second (cfs) were flowing out the stream as 

measured where the water flows through a metal culvert under the road 

300 yards below the dam. This is the first time in at least five years 

that any flow has been measured from the millpond. 

If I assume that spring water was the only source of inflow at 

this time, it is reasonable to suggest also that the springs were 

supplying more than 0.57 cfs into the lake. Naturally some of the water 

input was lost by evaporation and by infiltration to the surrounding 

shore areas. It is probable that springs actually supply nwre than 1.0 

cfs to the water system, but this is distributed to the water table in 

the bogs as well as to the lake; from the bogs it is rapidly transpired 

into the atmosphere by plants and is thus removed from the system 

rather quickly. The water table at the pe~iphery of lake basin is un­

doubtably not part of a closed groundwater system; however, no extensive 

studies of subsurface flow were made, and therefore no more elaborate 

discussion of water gain or loss can be made at this time. 

_Ihermal.~erties. --Glovers Pond is a temperate, dimictic lake 
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in the classification of Hutchinson (1957). The lake turns over in tl12 

spring and fall and maintains strong thermal stratification during the 

surruner. In the winter the lake is weakly stratified. 

In 1966 the spring overturn came during the third week of March 

when the ice left and temperature inversion began. On March 6 the 

surface temperature was 3.3QC while the bottom temperature was 5.0°C. 

On March 20 the temperature at the surface was 7.7°C while that at the 

0 

bottom was 6. 6 C. Overturn began shortly before March ~C. I:.1 March of 

1967 the lake was still frozen and snow covered due to late snow storms. 

(Data taken in early 1967 is used here to produce a continuum as an 

illustration of the seasonal thermal conditions since such data are not 

available for spring, 1966.) The thermal curve for the lake at this 

time appears in Figure 16 a. Because of this late snow the lake did not 

melt until April, and the overturn was probably considerably later. 

Wind continued to mix the lake through May and into June when the 

thermocline began to strengthen. Three thermal curves for May of 1967 

(Figure 16 b, c, and d) indicate that the lake had 2lready lost the 

holothermal character of the overturn and was beginning to warm in the 

upper layers. The upper one meter of water was well mixed while the 

metalimnion was beginning to stabilize below this depth, extending to a 

depth of about 2 meters where the gradient became less steep ::;s;ain. 

Three thermal curves for mid-·June 1967 (Figure 17 a, b, and c) 

indicate that the water body as a whole was still warming, but the upper 

one or two meters were warming at a faster rate, as would be expected. 

The top of the rnetalimnion was now firmly established at one meter depth. 

Its base was at about 4 meters. These data for May and June of 1967 

probably represent the normal formation of thermal stratification for 
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Figure 17.--Thermal conditions at station Lk-1, sunnner, 1967. 
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Figure 18.--Thermal conditions at station Lk-1, July, 1966. 
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Figure 19.--Thermal conditions at station Lk-1, August, 1966. 
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Glovers· Pond. 

In 1966 the maximum surface temperature of 29 C occurred on 

July 3 when the air temperature reached a high of 40 C. From this 

time the top of the metalimnion moved steadily downward until it 

reached the 4-meter mark in early August. The thermocline did not 

extend much below 6.0 meters. 

The thermocline produces a very stable barrier against circu­

lation of epilimnitic wate:rs with the hypolimnion in Glovers Pond. 

By the end of the summer the epilimnion had a volume of approximately 

158,250 cubic meters, whereas the hypolimnion had been reduced to 

about 43,211 cubic. meters. This uniformly warm upper strata provides 

good living conditions for the biologic community of the lake. Complete 

stagnation probably takes place only in the bottom two meters of the 

lake . 

The thermal properties were not studied during the fall so no 

data are available for the time of the fall overturn. The mean date 

of the first fall frost in the area is October 12 (Kennedy, et~._!_., 

1963, p. 92). The temperature during the fall of 1966 remained warm 

during the daylight hours until November 4. It is probable th2.t the 

thermocline did not begin to disintegrate until this lasting cold 

weather set in. The fall ovt:..rtt:rn, therefore, probably occurred 

during the second or third week of November. 

The writer vi~ited Glovers Pond in late December cf ]966 and 

found only a thin (1 to 2.5 cm) layer of· ice present. The lake did 

not freeze permanently until December 13. The temperature during 

the day of December 31 reached SS F. This was part of a warm trend 

that spanned the last several days of 1966. Heavy ice fornation was 

impeded b~ this warm weather until January of 1967. 



www.manaraa.com

. -

L 

47 

Several variations in the thermal data from Glovers Pond require 

further explanation. It will be noted that on all of the thermal curves 

(Figures 18 and 19) presented here for July and early August of 1966 

(excepting that of July 3 which is measured in whole meter intervals) 

there is an elevation of the temperature at the 5.5 meter depth which 

causes a slight concavity in the curve for that depth. If the slope of 

the graph held constant; the temperature at the 5.5 meter depth would be 

about 10.1 C, whereas it was actually 11.9 C. 

At first glance this trend does not appear to continue in the 

curves after August 12; however, on inspection it will be seen that the 

temperature is still about 12 Con those curves as well. The reason 

that the concavity of the curve is lost lies in the fact that the warmer 

water at the base of the thermocline has reached almost to the 5.5 meter 

depth and has incorporated the relatively high temperature of that depth 

into its structure thereby changing the overall slope of the graph at 

this depth. 

This slight deviation from the normal trend of the temperature 

curve is interpreted by the writer to be caused by an influx of spring 

water into the lake below the level of the thermocline. The consistency 

of this temperature (about 11.9 or 12 C) at this particular depth is 

reliable evidence that springs do enter the lake proper al so ~2 depi:h 

below the surface along the north shore. More than one such spring 

probably exists. 

A second variation in the thermal distribution appears in Figure 

20, 21 and 22. These variations are discrete with time. They do not 

repeat in any regular pattern, but they do have reflections vertically 

on the graphs on particular days. Some of these flucuations correlate 
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Figure 20.--Temperature variations in the upper three meters at 
station Lk-1 in Glovers Pond during July and August, 1966. 
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station tk-1 in Glovers Pond for July and August, 1966. 
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with extremes of daily temperature as is the case of the high on ·July 

0 , 0 ) 2 and 3 when the air temperatures were near 100 F (40 C. The other 

extremes occurred on days when heavy rain fell. This rain water, 

settling in the lake to a depth commensurate with its density, caused 

variations in the thermal curves of the lake at various depths. This 

is the case, for example, on July 6, 7, 15, 19, 28, 29 and August 11, 

12, 15, 16, 17, and 7-3. Most of this rainfall was only a few tenths 

of an inch, but on August 15, 16, and 17 produced a total of 2.4 

inches and caused longer lasting deviations in the curve. These 

deviations thus represent daily fluctuations in the climate of the area. 

The final.variation is that sho~1 on the thermocline for August 

12 (Figure 19, b). Here the metalimnion is broken up into a series 

of smaller thermoclines. This structure may be attributed to rela-

tively high (about 15 mph) winds which disturbed the lake during 

that day. Rain occurring at the same time also had an effect on the 

thermocline, but most of this disturbance is attributed to wind action. 

The thermal properties discussed here for Glovers Pond are usual 

for a dimictic lake (Ruttner, 1963). The thermocline provides a density 

barrier stroDg enough to inhibit the mixing action of the wind, and 

allows the bottom few meters of the lake to become relatively stagnant 

during the summer. Ice in the winter also protects the water body 

from the wind. This permits only the two regular periods of overturn 

in the spring and the fall. 

Chemical Limnology 

General chemical conditicns.--The chemistry of Glovers Pond was 

studied during 1966 in order to characterize the chemical properties of 

the lake. Alkalinity, pH, calcium and magnesium hardness, chloride 
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concentration, and oxygen content were considered to be the factors 

best suited to characterize ;:h::) lake, and at the same time, they were 

readily measured with the equipment and time available. Techniques 

were used to measure these factors are discussed in ~ppendix A of 

this report. 

The portion of New Jersey in which Glovers Pond lies is described 

by Anderson and George (1966, p. Gl4) as having water with a moderate 

(90-250 ppm) content of dissolved solids, particularly calcium and 

magnesium, due to the fact that water is flowing through the Valley 

and Ridge province where limestone, dolostone, and shale bedrock 

prevail. The median turbidity is described by these workers as 5-10 

Jackson candle units (p. G41). The values for hardness, alkalinity, 

and chloride concentration as given by these workers agree well with 

the data obtained by the writer. Glovers Pond is chemically compati­

ble with other surface waters of the region. 

Water samples for analysis were taken primarily from two locations 

in the lake. Station Lk-1 (Figure 23) was in 7 meters of water at the 

end of the swimming area of the camp while station Lk-2 was on the 

shallow shelf at the southwest corner of the lake. Two other stations 

were occasionally occupied to contrast and compare data with results 

from the first stations. Of these, Lk-3 was located in the center of 

the northeastern half of the lake in 9.5 meters of water, and Lk-4 

was at the former location of the fire pumping line on the edge of 

the lake just southwest of the boating area. 

There are two principal chemical provinces in Glovers Pond. 

The first is the deep lake, or profundal zone. This, in turn, is 

subject to subdivision because of stratification of chemical factors 

by the action o~ the thermocline. The second chemical zone is the 
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Figure 23.--Location of sampling stations and line of 
chemical profile (Figure 25) in Glovers Pond. 
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water overlying the shel~ area. There are significant differences in 

the water chemistry of the two zones which, in part, reflect differences 

in the physical conditions already mentioned. Because of this dual 

aspect of water chemical values, the two provinces will be discussed 

separately. 

A complete investigation of the water chemistry of this lake would 

take two years of constant sampling, including detailed work with the 

biological productivity which has a very strong influence on the present 

environment in the two provinces. There are important biological 

differences between the open lake and the shelf, but a complete 

analysis of the chemical and biochemical relationships was beyond 

the scope of this study. 

Station Lk-1.--Station Lk-1 was located at the end of a floating 

boardwalk in the swinnning area above 7.0 meters of water. Because of 

the depth, water there is subject to thermal stratification and, to 

a lesser extent, to chemical stratification. The formation of thermal 

density layers restricts water circulation to such an extent that 

independent chemical gradients are formed. Such a gradient is known 

as the chemocline. The chemocline may be seen in Figure 24 from data 

taken on July 2. On this date the top of the thermocline was at 1..8 

met 0 rs depth and the base was at 6.0 meters. 

Discussion of chemical data from station Lk-1 will concentrate 

on information obtained from the epilimnion (the upper one or two meters 

of water) because this is the zone in which biologic activity is most 

significant and with which the values obtained in the shallow water 

above the shelf can best be compared. All values obtained for the 

summer of 1966 appear in Appendix B. 
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Chloride concentration (calculated as milligrams per liter of Cl-) 

varied, in the epilimnion, from 11.6 mg/1 to 15.6 mg/1 during the summer. 

This small amount of chloride does not have significant influence on 

the major chemical processes to be considered in this discussion. 

During July and August the pH of the water varied from 8.3 to 8.6. 

The content of dissolved oxygen in Glover~ Pond was measured 

periodically. Measurements were not taken during the first week of 

July when a plankton lJloor.1 was occur1:ing, so there are no data avail­

able for comparison of dissolved oxygen values durin6 periods of high 

and low biologic productivity. Oxygen values taken at noon in the 

epilimnion generally ranged between 9.0 ppm and 11.0 ppm. These 

figures are in close agreement with those found by Smith (1957, p. 194) 

in Silver Lake, a similar lake, three miles west of Glovers Pond. 

In lakes of this type the strong density differences caused by 

the thermocline frequently inhibit mixing of the water sufficiently 

so that the hypolimnion becomes highly undersaturated or even devoid 

of dissolved oxygen. (Ruttner, 1963, p. 74; Welch, 1952, p. 183) This 

was most certainly the case in Glovers Pond (as already shown such a 

chemocline does exist) just as it was in Silver Lake where at 32 feet 

no oxygen was found late in August. At 23 feet in Silver Lake on the 

same day only 1.05 ppm oxygen were found (Smith, 1957, p. 194). 

Water samples from the hypolimnion usually gave off a strong 

hydrogen sulphide odor. This is a good indication that circulation 

to the lower reaches of the lake was limited causing reducing condi­

tions to prevail in the absence of dissolved oxygen. 

Tables 2 and 3 give some values for carbonate, bicarbonate, calcium, 

and magnesium taken at station Lk-1. During July and August, carbonate 

content varied from 5.4 mg/1 to 27.6 mg/1 and bicarbonate ranged from 
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TABLE 2 

CHEMICAL VALUES FOR GLOVERS POND 
STATION Lk-1 ON JULY 12, 1966 

--::::'~ ==::::::::==::::::==--- ··-----------------

Depth 
Factor 

Surface 3 meters 

Carbonate (mg/1) 10.8 10.8 

Bicarbonate (mg/1) 143.4 15 7 .4 

Calcium (mg/1) 43.2 Ll-2.4 

Magnesium (mg/ 1) 21. 6 21. l 

Chloride (mg/1) 11. 6 10.1 

pH 8.4 8.3 

TABLE 3 

CHEMICAL VALUES FOR THE EPILIMNION 

7 meters 

none 

185.4 

50.4 

19.7 

10.1 

7.5 

AT STATION Lk-1 ( 1 METER DEPTH) IN GLOVERS POND 

Date - 1966 
Factor 

7/2 7/5 7/6 7/14 8/14 

pH 8.6 8.5 8.5 8.4 8.3 

Carbonate (mg/1) 27.6 22.2 5.4 22.2 10.8 

Bicarbonate (mg/1) 140.3 140.3 151. 9 142.7 247.6 

Ca le ium (mg/ 1) 44.0 

Magnesium (mg/1) 18.9 



www.manaraa.com

58 

140.3 mg/1 to 247.6 mg/1 during the same period. Calcium and magnesium 

were measured only twice at this station. Calcium concentration was 

about 44 mg/1 while magnesium was about 19 rng/1 during early July. 

As mentioned previously station Lk-3 ,,vas sampled periodically 

as a comparison for data from Lk-1. Due to its greater depth there 

are some variations in chemical parameters. Values for one day during 

the plankton bioom are listed in Table 4. In most cases the chemical 

factors did not vary a great deal bctwee11 ~he two stations except for 

effects of thE:: thermocline and the related chemocline. 

Stat ion Lk-2. --Station Lk-2 was located in the lit tor al zone on 

shelf (30cm deep) 5.0 meters from the lakeward edge (Figure 23). 

Chemical values in this sh~llow area were found to vary significantly 

from those of the profundal zone as well as from the epilimnion of 

the deep lake. The water over the shelf is usually less than one 

meter deep. It is bottomed primarily by deposits of marl and by 

the aquatic plant, Chara. The sun easily warms this shallow water 

and heats the sediments which in turn radiate heat back into the 

water from below. 
0 O 

Shelf temperatures as high as 33.5 C (92.3 F) were 

d d h · 1 f 2 6 °c to 28 °C recor e w 1. e temperatures o ·were common. Some 

chemical values for the shelf are given in Table 5. 

The pH there was always higher than that of the main lake a~ 

would be expected for an area of higher alkalinity. Values on the 

shelf varied from a low of 8.5 to a high o,f more than 9.2 with the 

most common value approximately 8.8. Chloride content of the water 

was not significantly different from that of the main lake. It was 

about 9 mg/1 most of the sununer. 
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TABLE lt-

CHEMICAL VALUES FOR GLOVERS PONl) 
STATION Lk-3 ON JULY 4, 1966 

Depth 

Surface 3.5 meters 

8.6 8.5 

Carbonate (mg/1) 22.2 22.2 

Bicarbonate (mg/1) 

Calcium (mg/1) 

Magnesium (mg/1) 

151.3 

44.0 

129.6 

TABLE 5 

162.9 

47.2 

20.6 

CHEMICAL VALUES FOR GLOVERS POND 
STATION Lk-2 ON JULY 5, 1966 

AT A DEPTH OF 10 CM 

Factor 

Carbonate (mg/1) 

Bicarbonate (mg/1) 

Calcium (mg/1) 

Magnesium (mg/1) 

Chloride (mg/1) 

Value 

8.9 

27.0 

87.2 

36.0 

155.0 

9.2 

-.---

----
9 meters 

7.0 

none 

189.1 

62.4 

13.4 
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Measurements of dis:olved oxygen taken at noon during August 

resulted in values of 8.6 mg/1 to 13.6 mg/1. As would be expected, 

these values are slightly higher than those of the main lake since 

the water is shallower and is constanly being mixed by the wind. 

Also, thick plant growth enriches this water by photosynthesis during 

the daylight hours causing higher values. 

The important factors of carbonate and bicarbonate alkalinity 

a~1·-: C':llcium and magnesium concentration at station Lk-2 show some 

variation from those at station Lk-1 (Table 2). The bicarbonate 

content is slightly lower than at Lk-1; hm-,:rever, the carbonate 

content is higher. This is caused by the greater biological and 

chemical activity occurring here. 

Chemistry of Source Waters.--Since the primary source of water 

for Glovers Pond is ground water from springs, samples from the 

spring brook and from one of the camp water wells were also analyzed . 

Water well no. 1 (location "X" on Figure 5) pumps from limestone and 

dolostone aquifers at 90 feet. (J. D. Taylor, personal conununication). 

Samples of the well water were drawn from the line before the water 

was chlorinated so that no contamination would occur. 

The spring water was sampled from the brook flowing through 

the ~c~theast bog where the water flowed under a small footbridge, 

about 80 feet from the spring itself. 

The samples are comparable in all aspects except for pH (Table 6). 

The higher pH of the spring water is probably due to the fact that the 

spring source is well below the bog surface so that the water must flow 

upward through alkaline sediments before emerging. Also, plants growing 

in the spring box and brook raise the pH by withdrawing carbon dioxide 

from the water. These factors serve to raise the pH considerably above 
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TABLE 6 

CHEMICAL VALUES FOR WATER WELL NO. 1 
AND THE SPRING BROOK JULY 5, 1966 

---------~-------

Factor Well No. 1 Spring Brook 

Carbonate (mg/1) 

Bicarbonate (mg/1) 

Calcium (mg/1) 

Nagnesium (mg/cl) 

7.4 

none 

258.0 

66.4 

20.2 

9.0 

none 

305.6 

68.8 

31. 2 
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that of the well water. As would be expected (Ruttner, 1963, p. 62) 

in ground water, all the alkalinity pr~sent was in the form of bicarbonate 

ions. 

. l C ++ ++ - d -Effects of Bio ~ogical Activity. --T 1e ions a , Mg , co3 , an HC0
3 

are closely interrelated with each other as well as with the biological 

activity of the upper stratum of the lake. This layer of water, being 

Glosest to the surface, receives the majority of the light and heat 

energy supplied to the surface by the sue. It is in this region that 

photosynthetic production is carried on causing ~nportant changes in 

chemical equilibria. These stresses in turn affect the above mentioned 

ions. 

Such a region of photosynthetic activity is called the trophogenic 

zone of the lake and is separated from the lower, tropholytic zone of 

respiration, or no photosynthesis, by a boundary defined (Ruttner, 1963, 

p. 72) at the point where the uptake of co2 in photosynthesis is exactly 

balanced by the output of o
2 

in respiration. 

In the chemical system of Glovers Pond, calcium, carbonate, and 

bicarbonate ions are present according to delicate equilibria. Free co2 

gas is dissolved in the lake water in varying amounts which may or may 

not be in equilibrium with the atmosphere at any one time. At all times, 

minimum concentrations of dissolved CO 2 are necessary in order tn n1ain­

tain balance in the equilibrium system described below. 

COz + H20 ~ H2co3 (1) 

H2co
3 
~ IV + HC0

3
- (2) 

2HC0
3

-~ CO
2 + H

2
0 + co= 

3 
(3) 
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If free co
2 

is removed from the system a stress results and the 

equilibrium shifts to remove that stress as in equation 3. 

During periods of increased phytoplanktonic activity in the tro­

phogenic zone rates of photosynthesis increase. This removes free 

CO 2 from the water first according to equation 4. 

6CO 
2 

(4) 

Removal of free co2 intrcd~ces a strebS to the system causing the 

half-bound co
2 

to be released according to equation 3. 

If, at the same time, the calcium ion is present in the system, 

the release of the half-bound CO
2 

will progress by the following 

reaction (5) . 

Due to this reaction, solid calcium carbonate will be precip­

itated from the system. These reactions will occur only if the 

respective ions are present at proper saturation levels, and only 

if the free CO 2 is depleted sufficiently in the system. These 

equilibria are discussed in detail by Ruttner (1963, p. 58-73). 

They are the most important reactions affecting Glovers Pond. 

Early in July in 1966, very warm air temperatures, up to 27 °c 

(106 °F), heated the epilimnion to 29 °C and stimulated growth of 

plankton causing a bloom to occur. The water became murky green 

cutting light penetration, as measured by Secchi disk, to less 

than one meter, whereas normal values generally exceeded three 

meters. This was the largest bloom seen by the writer in five 

summers at the lake and it undoubtedly shifted the chemical 

equilibria in the lake water. 
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First approximations of saturation values for calcium carbonate 

indicate that the epilimnion is supersaturated continuously during 

the summer months. The hypolimnion is barely saturated (dbout 12070) 

at 7 meters and is probably even less so at 9.5 meters in the deepest 

part of the lake during the same time period. 

These saturation differences indicate that much of the calcium 

carbonate formed in the epilimnion during such a plankton bloom as 

mentioned 2bove will begin to redissolve when it reaches the less 

saturated hypolimnion as Ruttner (1963, p. 193) showed. This effect 

will be more pronounced in the fall and winter ~ .. .rhen the temperature 

of the entire water mass has been lowered to about 8 °c and mixed by 

the fall overturn. This allows the water to hold more carbon dioxide 

in solution. Whether any calcium carbonate that may be deposited 

at depth during the sununer is actually redissolved from the bottom 

sediments during the winter or not is a question debated by some 

writers according to Ruttner (1963); in Glovers Pond there is a 

strong possibility that because of its depth some is again placed 

in solution due to the overturn. 

The same plankton effects described for the main lake (stations 

Lk-1 and Lk-3) will hold for the shelf area (station Lk-2). One 

additional factor must be added. As noted, plankton blooms play an 

important regulatory role in alkalinity concentrations at station Lk-1. 

These blooms are short lived and occur only once, or at most twice, 

a year. The littoral zone is subject to the same plankton growths, but 

it is also strongly influen~ed by very dense growths of Chara which 

blanket the outer shelf and the sublittoral slope to the limit of 

light penetration (3 to 3.5 meters). 
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Chara (stonei:rnrt or muskgrass) is a large multicellular alga i;,1ith 

a cylindrical stem and whorled branches. It occurs in water of high 

alkalinity, where its stems become coated 1,,Jith encrustations of calcium 

carbonate precipitated from the water during photosynthesis. 

On the shelf, high water temperatures and these blanketing g:rmvths 

of Chara serve almost as a continual plankton bloom, thus keeping the. 

water continually depleted in free CO 2 and continually supersaturated 

with calcium carbonat~ a~cording to L~e 3bove equilibrium reactions. 

_ghar.:i. is the most important biological-chemical agenl acting on the 

lake. It is a prime cause of the differences between the chemistry 

of the trophogenic zone at Lk-1 and the water of the shelf area of 

Glovers Pond. As will be seen, this in turn, affects the present 

sedimentary environment. 

Present Sedimentary Environment 

The lake was sampled for bottom sediments by means of an Ekman 

dredge at 36 stations, 11 of which were on the shelf and 25 in the 

deeper lake, as shown in Figure 23. The stations were chosen so that 

a good representation of both deep and shallow water sediments would be 

obtained. 

Color and texture of sediments.--Deposits from the profundal zone 

are entirely organic, gelatinous oozes containing a few larger decayed 

leaf fragments of terrestrial origin. These sediments are very dark 

brown (10YR2/2) to very dark grayish brown (10YR3/2) when wet and dark 

grayish brown (2.5Y4/2) to very dark grayish brown (2.5Y3/2) when dry 

(Munsell, 1954). This finely divided, silt-sized, organic sediment is 

classified as sapropel (Pettijohn, 1957, p. 488), or, in the particular 

case of lacustrine sediment, as gyttja (Ruttner, 1963, po 195). de-
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posits of this type were found at stations 13, 17, 18, 19, 22, 23, and 

24 (Figure 23). 

Sediments taken from the sublittoral zone on the slope are com­

posed of silt-sized particles in an organic rich, semi-gelatinous 

matrix containing needles and grains of calcium carbonate and numerous 

gastropod shells that have been swept of the shelf. On the slope a 

ciixing or t=ansition between profundal and littoral types of sediment 

occurs. Organic constituents decrease, whereas calcium carbonate 

content increases in progressively shallower sampleso This may be seen 

from chemical profile data in Figure 25. 

These shelf slope deposits have a wider color and textural vari­

ation than do the profundal· deposits due to the fact that they lie on 

the interfingering margins of littoral and profundal deposition. This 

gives such sediments a unique physical and chemical composition which 

is a transitional mixture of both environments. }'lost of the wet sedi-

ment is dark grayish brown (2.5Y4/2) whereas the most common color of 

the dry sediment is light gray (5Y6/l). Some of these sediments, if 

sufficiently organic, may still be classified as gyttja though they 

have been modified by additions of calcium carbonate. They will be re­

ferred to in this discussion as "transitional sediments" because of the 

dual origin (littoral and profundal) of their components. Deposits oi 

this type were found at stations 1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 20, 

21, and 25. 

The shelf is the place of most active sedimentation. Here, sedi­

ments are of silt-sized particles, or aggregates of these particles, 

composed almost entirely of calcium carbonate into which are mixed 

numerous mollusk shells and some plant remains. The wet sediment is 
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light gray (10YR7/2); dry samples are generally white (5Y8/l). Sedi­

ments of this type are pure marl and were collected at stations 10, 27, 

28, and 34. 

On the shelf the upper three inches of this marl is nearly a 

suspension. It flows freely when disturbed by the slightest movement 

of the water. This fluid condition decreases quickly below the three­

Lnch level to sediment of a more solid, muddy consistency which is the 

case to at least four feeL below the surface. The entire body of marl 

is well saturated with water. 

On the rare occasions when the wind blows strongly from the south­

west, waves of sufficient depth to erode the marl may be produced. At 

these times (usually during storms) the littoral material is swept from 

the shelf and deposited on the slope to produce the transition sedimentse 

The littoral zone is rimmed by sediments deposited as water levels 

recede each srnmner. These deposits are organic, consisting mainly of 

plant stems and leaves of shallow aquatic plants or marginal terres­

trial vegetation. They are very dark grayish brown (lOYRJ/2) when wet 

and gray (lOYRS/1) when dry. 

This organic sediment is often thinly spread over the marl, only 

to be removed when high water returns to the lake in the fall. Such 

thin organic layers are of little import at any one instant during sedi­

mentation at Glovers Pond. In one area only are they more developed 

than a one or two cm. thick bed. There, ~n the east edge of the lake 

(and to a lesser extent on the western margin), large beds of the white 

water lily, Nymphaea tuberosa Paine, have taken root on the marl. 

Their thick tuberous root systems have intertwined to form a mat which 

in turn serves to collect further organic material. This mat has ex-
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tended over the shelf edge due to the prolonged low water levels. It 

may be easily punctured with an oar yet it is a firm substrate that may 

even be walked upon. 

This is the beginning of a typical bog succession. From a sedi­

mentological viewpoint the plants here serve to secure the shoreward 

edge of the shelf from erosion and, additionally, form an organic-rich 

sedimentary stratum r.,rhir:h is a s•1ccessor to the marl and which is 

terminal in the lake sediment sequence. Water level strongly influences 

the rate of this incipient peat deposition. 

This mat serves as a rooting medium for lake-margin plants such 

as Typha (Cattail) and Scirpus (Bull rush) which grow along the shore. 

When the lake is low, seeds· of these and other marginal aquatics root 

in this border of organic sediment and bind it together so that higher 

water will not erode it. This foreshadows the advancing of zones of 

fringing marsh and bog vegetation which continually seek to establish 

viable communities on the littoral shelf. Thus, prolonged periods of 

drought and related low water levels have affected the sedimentation 

markedly by permitting shore vegetation to grow farther out on the shelf 

than is usual under present conditions. Samples of this marginal, 

highly organic sediment were take~ a~ stations 35. and 36. 

At three places along the north and northwest shore sediment 

texture and composition varied from the pattern described. 

The first of these an~malies is at stations 32 and 33. Here, the 

shelf sediments are usually of the marginal highly organic type, but 

at this spot higher amounts of marl were found with the organic matter. 

This was caused by the fact that a fire pumping line was established in 

the lake and material was dredged from the shelf for location of the 
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pipe. In the process marl that had been covered by organic sediment 

was brought up and mixed with that upper layer to produce unusual 

mixtures of the two. This is best shown in Figure 27. 

Another variation was found at station 15, the only station where 

large quantities of terrestrially derived sediment may presently be 

found. These sediments consisted of silt, sand, and gravel that had 

been eroded from till on the steep lake shore by water running from the 

dmvnspouts of the camp dining hall roof. '1i1is deposition has produced 

a delta having a five-foot radius. This is a minor source of sediment, 

but because of its composition and for the sake of completeness it is 

noted. 

The final variation was found in sediments at stations 30 and 31. 

There, the spring brook flows from the bog into the lake carrying with 

it entrained particulate organic matter of both large and small size. 

Some of this is derived from peat deposits in the bog, and some is from 

leaves and twigs fallen into the brook from bog vegetationo This 

material is not carried far into the lake; rather, it is gradually 

distributed along the sublittoral slope at the northeast tip of the 

lake by wind and wave action. This is only a minor source of sediment 

for the lake. 

Chemist~£ the sediments.--The gelatinous texture of the gyttja 

and marl made quantitative physical description of the sediments diffi­

cult and useless. In order to understand exact sedimentary regimes with­

in the basin, quantitative chemical analysis for percent total carbon, 

percent total nitrogen, and percent calcium carbonate content of each 

sample was made according to the methods used successfully by Callender 

(1968). These analytical techniques are described in Appendix A. 
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Approximately 120 analyses were required. 

Some sample~ of marl were analyzed by X-ray diffra~tion. The 

results showed that no dolomite or high-magnesium calcite arc being 

deposited. This permitted marl to be analyzed for carbonate with the 

assumption that essentially all of this was in the form of calcium 

carbonate. 

The amount of carbon attributable to organic processes (e.g., 

decaying pld~ts) was obtained by subtracting the percent of inorganic 

carbon in the CaC03 from the percent total carbon (both organic and 

inorganic) measured in the sediments. This value and the percent total 

nitrogen in the sediment were used to indicate the amount and character 

of the organic matter in the deposit. 

Some additional values of chemical analyses are given in Appendix 

B. Calcium carbonate content varied from essentially ~ero 1.6% to 

89.4%. The total nitrogen values ranged from 0.51% to 4.96%, whereas 

total carbon content ranged from 14.35% to 39.88%. The C/N value 

varied from 4.9 to 12.7. 

Sediment distribution.--By contouring these chemical values of 

sediment in the lake basin a clear illustration of sediment distribution 

can be produced. Figures 26 and 27 show that the basin is being filled 

by concentric bands of sediment, ~(':T'_e of which look physically alike 

but which are actually quite different chemically and therefore have 

different origins. 

The profundal zone, particularly in the deepest section, is re­

ceiving almost entirely organic sediments. Calcium carbonate values 

are extremely low as predicted for the hypolirnnion where the water is 

undersaturated or barely saturated with Caco3 most of the year. 
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www.manaraa.com

..... 

I 
I I 

, I . ; , . 

I 
I 
I 
I 
I 
J 
I 

I 

I 
60 
I 

/ 
/ 

I 

I 
I 

I 

73 

,,_,. ..... - .... ,, 
,,,,. \ ,,,,. \ 

// \ 

/ ---... \ \ 
/ /' ', \ \ 

/ ' \ / / / ,-...... \ \ \ \ 
I I/' ,, \ \ 

I I/ , \ \ \ 
I I / \\ \ I I 

I I I I I l 
I I I ,,,-, JI I I 

I , I II' ,' ,, I I I 
I I I , I I 
I I I /' I J/ I I I 

40 I 10 0.,. 1 I I ' I I 
I JO ~ I I ~ / I I / 
// / / ) / 11 / 

/ / .,,.... / / / / / / / 
I// I I///// 

1 1 / , 1 1 ,, I / 
/11 , /////I 

I I I ,_ ... / 1 I I 1 
I / / I 

,, \ /,11, 
I I\ ///// 
I } I "'" I I I / 

I / I I / I I 80 
I I "'I / / I / 

I I \ ,,, "',-" I / 
I ,_... "'"' "' .I.: 

I I ,,,,._ "'/' 60...., A 
I I .,. 40 .,. ~ , ~ /' ~ 

/ I 20 , / ,,, 
I I / /:." .,,,/ 

I / / /' ; , \ / // ,, 
I , _ _, / / /,,-

/ / / / 
/ / 

I / / / 
I / / / 
\ / / I 
, ... / / I 

/ I 
/ I 

/ / / 

1 ~ /'/ / Edge 
I ,~ I 
I / 
\ / 

........ -.::::.=: 

0 
l 

CONTOUR INTERVAL: 
10 and 20% 

SCALE IN FEET 

100 
1 • I 

200 
I 

300 
I 

Figure 27.--Distribution of calcium carbonate in bottom 
sediments of Glovers Pond. 
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As one approaches shallower water, 8aco3 content is found to 

increase while the percent nitrogen decreases. On the shelf at the 

northeast end of the lake, however, the percent nitrogen increases 

shoreward; there the C/N values are high, indicating that the sedi­

ment is derived from terrestrial bog vegetation rather than from 

aquatic vegetation. 

In order to make the sediment distribution map in Figure 28, 

arbitrary values for percent calcium carbonate arid percent nitrogen 

content were picked to define the various types of sediments, since 

the sediment system is actually continuous and gradational. Gyttja 

was mapped where the sediment contained less than l1.010 calcium 

carbonate or more than 3% total nitrogen. The ''transitional sedi­

ments" were those having from 40% to 80% Caco3 or between 310 and 1% 

total nitrogen. Sediments with greater than 80% Caco
3 

were mapped 

as marl. The marginal, highly organic sediments were mapped on the 

basis of C/N values exceeding 9. 

Origin of the sediments.--It is clear from the descriptions 

already given that there are four main types of sediment presently 

being deposited in Glovers Pond. These deposits indicate that 

markedly different environments of deposition exist within the basin. 

A discussion of sediment origins is thJs important for complete 

understanding of the present environment and is a necessity before 

interpretation of the paleo-environment ~an be made. 

Gyttja is now being deposited in the area of deepest water. 

This organic matter originates as phytoplankton and zooplankton, 

primary producers, living in the warm waters of the trophogenic 

zone, often in its uppermost region. These microscopic organisms 
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grow in vast quantities during optimum "bloom" conditions, but 

quickly use up nutrients necessary to sustain such teeming life 

in the uncirculating epilimnion. When they exceed this limit 

they die and settle slowly through the thermocline to the bottom 

to form organic ooze. 

At the same time, the plankton bloom causes shifts in the 

carbonate equilibria of the trophogenic zone by using all the free 

cc2 . This causes stress in the system as previously described and 

Caco3 is precipitated. This too settles toward the bottom. When 

it passes into the hypolimnion, however, much of it is again 

dissolved by the colder, less saturated water of this layer. 

Only in the shallower portions of the profundal zone can calcium 

carbonate settle without being greatly affected. Clearly the 

gradual shallowing of the basin, coupled with depth-controlled 

organic and carbonate deposition, causes a complete gradation 

between true gyttja and true marl. 

Little terrestrially derived material reaches the deepest 

portion of the basin. Wind-blown silts and clays might be trans­

ported from the shore, but they lack a source and are not found in 

the gyttja. Snail shells which would have to be transported from 

th~ lictoral or sublittoral zones are nearly non-existent in the 

gyttja, indicating that there is little transport of marginal 

iediment to the center of the lake. It is apparent, then, that 

the gyttja is a product of, and therefore reflects, physical and 

chemical conditions in the profundal region of the lake. 

At the other extreme is deposition of marl on the shelf. The 

marl has three components, all of which contribute calcium carbonate. 
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These are: 1) primary Caco
3 

deposited by direct precipitation from 

the water; 2) mollusk shells which are extremely numerous on the 

shelf; 3) biochemically derived Caco3 which covers the stems of Chara 

growing on the shelf. Of these the Chara is the most important and 

is the reason for the existence of the shelf at present. 

As mentioned, Chara borders the entire shelf and blankets the 

-slope to the ma~imum depth of photic penetration. An example of 

this growth may be seen in Figure 29. These plants annually grow 

and die back according to the season. When ~ha~ dies, plant 

remains fall to the bottom and decay leaving their tubular carbonate 

crusts as part of the sediment. 

Chemical analysis of living Cha~ taken from the shelf and 

allowed to decay showed that the remains contain an average of 

87.9% Caco3 . These remains have an elongate shape and a striated 

appearance under magnification. They are often preserved and are 

found to be numerous in samples of both surface and subsurface marl. 

The Chara not only serves to deposit marl on the shelf, but it 

also stabilizes the shelf and maintains the steep slope which is 

stabilized because Chara is rooted, though loosely, in the sediment. 

The thick growth thus acts, just as terrestrial vegetation covering 

a slope, to hold the sedime~t ln p1~ce and minimize movement of large 

quantities by wave action or sub-lacustrine slumping. At the same 

time it is an aid in the lakeward migration of the shelf. 

This migration occurs slowly. Though the Ch~ is stable, some 

storms or high winds do manage to trgnsport sediment to the shelf 

edge and beyond. This material rapidly settles and is trapped in 

the thick Chara bed on the slope. This sediment, plus that derived 
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Figure 29.--Foregrou~<l s!1~ws a thick growth of 
Chara blanketing the she]f at the northeast end of 
Glovers Pond. 
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from Cha r a decaying in situ, forms a new laye r a l ways parallel to 

the shelf profile, yet advancing ever farther into the l ake. This 

is not to imply tha t s ed iment s would not adva nce into the l ake if 

this plant were absent. They would, a nd perhaps more r a pidly, but 

they probably would not maintain the steep slope and shelf which 

are so c ha~acteristic of pres e nt conditions. 

In thL, .sense the _Cha~ is .::ina logous to cora l in a marine reef. 

If the s tems of Chara were more durab le, it is prob ab le that ana lo­

gous back reef carbonate, reef core, and fore reef talus sediments 

would be present. 

The "transitional sediments" originate where overlapping of 

the profundal and li t toral environments occurs beginning at the 

maximum depth of Ch~ growth. Here pl anktonic, organic sediments 

and calcium carbona te precipita ted from the epilmnion mix with dying 

Chara at the base of the slope. The water in this zone is usually 

incorporated into the thermocline during the sununer months. As 

discussed, it is supersaturated with Caco3 , thus _ making primary 

deposition of this mineral possible. These sediments are , there­

fore, of several different origins and their deposits precede the 

advancing shelf. They may be found presently in 4 to 7\ meters of 

water in Glovers Pond. 

Marginal, highly organic sediments owe their origin to lakeward 

migrating zones of shore veget a tion, first ' in the form of Pot amoge ton, 

Nymphaea, Sagittaria, 1zpha, and Scirpus, and later as Carex, grasses, 

alder, swamp maple, sumac, and other sedges and shrubs which prefer 

soil of high moisture content. The l ake shore has several typical 

vegetational zones, as would be expected, which are a source of the 

.I 
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organic rich sediments with high C/N values. 

When the lake level is lowered, these deposits thicken and 

migrate l akewar d according to the process described earlier . As 

much as one meter of the littoral zone was covered in this manner 

during the mid 1960's due to the drought. Peat deposition, begun 

by this means, is currently in progress in bogs a t the north , 

oortheast, and sout hwe st corners of the lake in areas previously 

occupied by open water . 

As has been shown, each sediment type owes its origin to a 

restricted environment within the lake. By understanding this 

pattern of deposition and how it · changes, interpretations regarding 

past depositional environments may be made more accurately . 

Present Molluscan Fauna 

During the course of sediment sampling and collecting of water 

samples, note was made of the occurrence of aquatic mollusks in 

Glovers Pond. Terrestrial gastropods were also collected from the 

surrounding woodlands. These notes show that at least nine species 

of aquatic gastropods, nine species of terrestrial gastropods, and 

three species of bivalves inhabit the lake and surrounding land at 

present. The following is a list of the species as tentatively 

identified: 

Aquatic gastropods 

Helisoma companulatum (Say) 
Helisoma anceps (Menke) 
Gyraulus parvus (Say) 
Fossaria obrussa (Say) 
Physa sp. 
Lymnea sp. 
Stagn icola sp. 
Amnicola limosa Say 
Valva ta tric arinat a (Say) (acarinate form) 
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Terrestrial gastropods 

Bivalves 

Tr iod ops is albo l ab ris (Say) 
Triodops is tri<lentata (Say) 
Stenotrema hirsutum (Say) 
Stenotrema fraternum (Say) 
Anguispira alternata Say 
Succinea? sp. 
Cionella lubrica Mu ller ---------
Discus cronkhi t e i catski llensis (Pilsbry) 
Retine ll a e l ectr ina (Gould) 

Anodonta cataracta Say 
Sphaerium rhomboideum? (Say) 
Pisidium ferru gine11m? Prime 

Distribution of the aquatic species definitely reflects certain 

ecologic factors prevailing in the l ake. Amnicola limosa and 

Valvata tricarinata (acarinate fonn) were taken exclusively among 

clumps of living Chara growing on the edge of the shelf. Physa, 

He lisoma companulatum, Helisoma anceps, and Gyraulus parvus were 

taken both among the Chara and in shallower water from filamentous 

algae and from the underside of waterlily pads. Foss a ria obrussa 

and b.zE1~ were taken only from the bottom of the water lily l eaves. 

Stagn icola was found only in the colder water flowing in the spring 

box in the northeast bog. It w3:s accompanied by large specimens 

of Physa. 

The specimens of Amnicola, Heli~, and Valvata found in the 

Chara beds were always pale, nearly white , and a ppeared to be almost 

clear when wet. Ncne of these was ever seen on the mar l itself. 

The freshwater mussel Anodonta cataracta was collected alive 

on only two occasions a lthough numerous empty shells on the shelf 

bottom suggested that ·it is fairly common in the l ake. Originally 

this was thought not to be the case. Dai ly searches were made for 
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mussels during ear ly June, July and early August with no success. 

Frequent l y a canvas raft which could float in only a few inc he s of 

water was used with a diving mask to allow close inspection of the 

bottom and still none was seen . 

On August 16 a heavy rainstorm (1. 7 inches of precipitation) 

raised the lake level a ppreciably . Up to that time much of the shelf 

had been exposed due to the drought. The sediment below water level 

co r! ta!ned a high amount of hydrogen sulfide a s evidenced by the 

s trong smell and by the fact that a silver ring on the writer's 

hand was rapidly bl ac kened by a coating of silver sulfide while 

being run through the sediment in search of the mussels . This 

de leterious condition could not have been easily tolerated by 

mollusks . 

Following the rain, many trails were noted and a mussel was 

taken on August 17 , presumably indicating migration of the mussels 

toward shallower water. On August 18 four mussels were taken 

within a radius of ten feet, and many trails were noted; most 

trails were more than twenty feet long, indicating that a great 

deal of movement was taking place. 

Because of the fluid nature of the marl it is impossible for 

thE.. ,1~c .:)sc:ls to dwell at, or even near, the surface as most would 

do in more compact sediment . They apparently live well below the 

sediment surface where the substrate is more firm. When the lake 

level recedes, they migrate toward the edge of the shelf under the 

Chara mat where they lie until the heavy rain raises and freshens 

the water. At this time they migrate rather rapidly back to the 
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shallower water. Perhaps in this way, they avoid the high H2S content 

of the stagnating shallows. 

These mussels hav e been identified as Anodonta cataracta Say by 

comparison of width/height and he ight/length ratios of living and 

dead specimens with those given by Clarke and Berg (1959, p. 39) for 

several spec ies of Anodonta inhabiting the Atlantic drainages. 

These data are compar ed in Tables 7 and 8. Although the specimens 

have a H/1 ratio si:nilar to that of A. imbecilis the overall fit 

of both ratios was deemed closer to that of A. cataracta. 

Sphaerium rhomboideum? and Pisidium ferru gineum? have been 

tentative ly ident tfied. Both of these species were collected only 

suspended within masses of intertwined living Chara in association 

with Arnnicola and Valvata. They appeared pale as v:rere gastropods. 

This me thod of growth in, or on, algal masses was mentioned by 

Herrington (1962, p. 25) as co rrrrnon for Spha2rium rhombo id eu~. 

Pisidium ferrugineum was mentioned (p. 40) as occurring in marl 

lakes. 

Samples of ~arl contained hundreds of dead shells of all 

of these Chara-associat ed mollusks, but no living specimens were 

ever included in such samples. The very fluid marl substrat e 

makes it impossible for aDy nf these ~m~ller mollusks to survive 

on the open bottom. Without support above the marl ooz e by b eds 

of Chara, they could not live on the shelf. The import ance of 

Chara as a substrate on wh ich mollusks can live is a prime 

ecologic conclusion to be drawn from the conditions on the she lf 

of Glovers Pond. 

3028 72 
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Lengt h 

97.0 

91.0 

98.0 

86.0 

98.0 

104.0 

102.0 

102.0 
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TABLE 7 

SHELL SIZES (IN l'v1M) AND RATIO S FOR 
SPECIHENS OF ANODONTA CATARACTA 

TAKEN FROM GLOVERS POND , NEW JERSEY 

He i ght Width H/L 

Liv i ng Specimens 

48.0 36.5 .495 

44.0 34.5 .483 

49.5 39. 0 .505 

'45.0 33.0 .523 

49.0 39.0 .500 

Dead Shells 

53.0 41. 0 .509 

55.0 40.5 .539 

49.0 38.0 .480 

Range of shell ratios (.48-.54) 

W/H 

.760 

. 784 

.787 

.733 

. 796 

. 773 

.736 

. 775 

(.73-.79) 
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TABLE 8 

COMPARISON OF ATLANTIC DRAINAGE SPECIE S 
LISTED BY CLARKE AND BERG (1959) hTITH RATIOS 

OF ANODONTA CATARACTA FROM GLOVERS POND 

Species H/L 

Anodonta grandis .45-.55 

Anodonta i mp licata .46-.58 

Ano donta tmbecilis .48-.55 

Anodonta cat aracta .45-.56 

Glovers Pond species .48-.54 

W/H 

.68-.88 

.78-.88 

.62-.72 

.62-.76 

.73-.79 
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PAST ENVIRONMENTS OF GLOVERS POND 

Glacial and Post-glacial Sediments 

Five cores, three from bogs and two from the open lake, were 

taken during t he summer of 1966 a t Glovers Pond, New Jersey . These 

were augmer1t2d by about two doz en posthole auger s amples from a reas 

around t he periphery of the l ake basin. The loc a tions of core and 

important auger sampling stations are shown on Figure 31. Cores 

were located so as to provide a reliable cross-section of sediments 

along the long axis of the lake basin. Those from the open lake 

were taken from a floating coring platform (Figure 30). 

The only iroblem in coring wa s the foreshortening of the cores 

due to sediment compaction when the core barrel was pushed into the 

strata. This problem is frequently encountered in coring (Piggot, 

~941; Emery and Deitz, 1941), particularly where poorly compacted 

sediments with high water content are involved. Peat, and gyttja 

units were most susceptible to this distortion whereas deeper silts 

were not distorted appreciably. An adjustment of 0.2 meter per 

meter cored was made for compact~o~ . This is a conservative 

estimation of the amount of compaction and a larger correction 

would not be out of order in some cases. 

Stratigraphy of the lake deposits . --Due to differences in the 

types of sediments, the cores have been divided into two groups for 

stratigraphic description. First the bog stratigraphy will be 

discussed, followed by stratigraphy indicated by cores taken from 

86 
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Figure 30.- - Coring at station C-Lk-1 (8.5 me­
ters deep) u s ing the floating core platform. Location 
o f this station is given on Figure 31. 
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the open lake. Detailed physicnl descriptions of the units are 

given in Appendix B. Strata are correlated in Figure 31. 

Six major stratigraphic units, designated units A through F, 

can be recognized in the bogs on the basis .of similar lithology, 

texture, color, and chemical composition. Four of these units have 

depositional counterparts in the present sedimentary cnvirorm:ent of 

the lake. 

The basal unit, unit A, is, in ail cases, gray clayey silt 

containing pebbles and cobbles of varying lithologies. One such 

small cobble, about three inches in diameter, was recovered jaimned 

in the cutting head of the corer. Coring was halted when cobbles 

or boulders large enough to stop penetration were encountered. This 

sediment is interpreted to be till. 

Above this, in the southwestern bog, is a uniform gray or dark 

gray layer of slightly calcareous silt, although in the northern 

bog the till is overlain by sand which grades upward from coarse 

to very fine sand within about two meters. This sand represents 

an areally restricted facies of deposition and is, in turn, overlain 

by silt. This silt and sand, collectively designated unit B, is of 

glacial and peri-glacial origin. 

Over the silt in both bogs is unit C, a very dark gray to dark 

olive gray, organic-rich silt. This sediment is believed to mark 

the beginning of true post-glacial sedimentation. No material was 

being actively contributed by glacial or peri-glacial mechanisms, 

although erosion of surrounding glacial sediments was a factor 

contributing to this deposition. 
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A layer of calcareous, organic-ri('h silt (unit D) over] I,•:-; 

unit C. This bed contains many shcl I fragments, plant stern::, .-md 

_ghara oogonia and is distinctly L:1111111.itcd due to accumulatio11:: of 

this material on bedding planes. Scd iim•nts of this type arl· .111alogous 

to those presently being deposited jn the transitional zone .11 the 

base of the shelf in Glovers Pond. 

Light gray marl of unit E overlil':; the "transitional :::<·dilllents". 

Occasional layers of Chara stems and 11umerous mollusk shellt: ,11ark 

bedding planes within the marl. This unit becomes increasi11r.ly 

more water saturated and more poorly compacted toward the tup. 

Unit F consists of dark brown sedge and reed peat above• the 

marl. In some instances the peat bcco111cs woody, but sedge p1·.1t 

is the more common form of bog deposit. 

At least eight units are discer11:1ble in the two cores (C-Lk-1 

and C-Lk-2; Figure 31) from the open Like. Sediments in tlwr:c 

cores represent continual deposition in the lake basin from the 

time of its origin to the present. nccause this deposition I nok 

place in the central part of the b.:1si11, these sediments an_• 111,1rkedly 

different from those of the bogs. Lnkc core units have been designated 

as units I through VIII. 

Both lake cores terminated in till. Designated unit T, this till 

is correl~ted with till in the bog cores described previous]y ns unit 

A. Silt and clayey silt, designated ns unit II, overlie th1· 1 i.11 and 

are correlated with unit Bin the bogs. 

This non-organic silt is overbill by dark gray to dark 1-l ive gray 

silt containing organic material. Termed unit III, this or~~111 1ic-rich 

silt is, seemingly, the lithologic and chronologic equivalent of unit 
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C in the bog sequence. It represents the beginning of post-glacial 

deposition in the basin. 

Overlying this is a more complex sequence of calcareous and 

non-calcareous gyttja. In core C-Lk-2, this reaches the composition 

of marl in the upper portion (unit VIII). Units IV, V, VI, and VII 

are differentiated on the basis of calcium carbo11ate content. They 

represent related forms of deposition with slight environmental 

variations. 

Conditions differ slightly in core C-Lk-1 where 6lightly cal­

careous gyttja (unit IV) and non-calcareous gyttja (unit V) are 

overlain by a rather thick (1.2 m) unit of very calcareous (almost 

marl) gyttja. This has been designated as unit VI and marks a major 

environmental change which is masked to some extent in core C-Lk-2; 

that core was taken closer to the shore and was thus influenced more 

by littoral shelf-slope forms of sedimentation. Unit VII encompasses 

a gradational change upward from highly calcareous sediment toward 

the nearly non-calcareous gyttja of unit VIII, which is essentially 

the same as sediment now being deposited at the ~ite. 

Facies Relationships at Glovers Pond.--It is apparent that 

correlation of stratigraphic units at Glovers Pond is complicated 

by the existence of several environments of deposition within the 

lake basin. Units deposited after unit C (= III) have a typical 

facies relationship with each other as indicated on Figures 31 and 32. 

The three lowest units of all cores conform to the shape of 

the lake basin and deposition of similar sediments under similar 

environmental conditions at essentially synchronous intervals of 

time. They may be equated lithologically and time-stratjgraphically. 
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Generally, they do not have interfingering relationships (excepting 

the sand zone in unit B) and their conts.cts r:1ay be assurr.ed to bC' ~5.r2 

planes. 

No certain correlation can be made above unit C (= III) without 

accessory fossil evidence or absolute dating. This is due to the 

migratory movement of the shelf as shown scher:1atically in Figure 33 

for relationships in the southeast bog. Marl deposited at the base 

of core C-IV-2 has no marl time equivalent in core C-IV-1, although 

a zone of wood fragments indicates that it is time equivalent to 

the marl in the base of unit E in core C-I-1. Rather, when marl 

deposition began at station C-IV-2, transitional sediments may have 

been deposited at station C-IV-1 and gyttja was deing deposited in 

the open lake. When peat was first deposited at station C-IV-2, 

marl was being deposited at stat.ion C-IV-1 and gyttja was :forming 

in the profundal zone of the lake. 

This shelf, shelf-slope, and profundal sequence of sedimentary 

environments is strikingly similar to the Unda, Clino, and Fundo 

classification of sedimentary environments proposed by Rich (1951). 

His lithologic terms undathem, clinothem, and fundathem could 

easily be applied to the marl, "transitional sediments" of the 

shelf slope, and the profundal gyttja that I have described. 

It may be seen that the plane of synchronous deposition is 

curved and has essentially the same shape as the present surface of 

deposition. In Figure 33 these planes of contemporaneity are shown 

schematically by the curved lines which represent various positions 

of the migrating shelf slope. The relations of the facies are, on 

a very small scale, the same as magnafacies and parvafacies (Caster, 
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1934, p. 19). Each of the major lithologic units (D, E, and F) of 

the bog sequence transgresses time and represents a magnafacies, 

whereas the bodies of sediment within each major lithologic unit 

deposited between the various surfaces of deposition (lines 1, 2, 

and 3 on Figure 33), the "planes of contemporaneity" of Caster, 

are parvafacies. 

Complicating this is the factor of compaction, which may be 

causing warping (compression) of stratigraphic as well as time 

surfaces in the older sediments. Furthermore, tho.re are positions 

in the bog or on the shelf at which continuously deposited sediments 

do not reflect varying environmental episodes. This is true because 

not all deposits, or depositional environments, are equally sensitive 

to environmental changes of the same magnitude. Thus, lithologic 

changes (indicating environmental episodes) detected only in deep 

lake sediments are not reflected as changes of lithology within 

the continuously deposited marl or peat sequence. Therefore, 

interpretation of a single core taken in the present bog might 

well preclude recognition of such an environmental episode. Also, 

this evidence of an environmental episode is impossible to interpret 

from physical data alone. Eventually, radiometric d~ting methods 

must be used to establish proper time-stratigraphic relaLinnships 

between the units. The import of the facies effects and the 

environmental episodes here discussed will become clear during 

discussion of the sedimentary history of·the lake. 

Description of the Cores 

Cores from Glovers Pond have beerL described using physical, 

chemical, and palcontological characteristics. In most cases 
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chemical analysis seemed more significant than particle size or 

p,aleontological analysis. A combination of these parameters was 

used to make the final correlations shown on Figure 31. 

Physical DescriRtion of Cores.--Analysis of various physical 

characteristics of the sediments such as color, texture, and 

particle size were attempted for each unit of the cores. It soon 

became evident that, because of the high organic content of the 

gyttja, particle sizA analysis w01tld not be practical for sediments 

from the open lake cores. The gelatinous ooze continually clogged 

sieves and flocculated in the settling columns. In this case, 

color and texture alone were described •. 

Size analysis of glacial, and peri-glacial sediments, and marl 

was not difficult. These were wet sieved into settling tubes and 

sampled according to a schedule of prearranged settling times. 

Results are presented in Figure 34. According to the classification 

here utilized (Shepard, 1954) most of the sediment, (including the 

marl units), is silt or clayey silt. The only variations from this 

are the two samples taken from the sandy zone of. unit Bin core C-I-1. 

These show the gradational trend from sand in the lowest part, to 

sandy silt in the middle, and finally the upper part becomes pure 

silt and is indistinguishable from silt units in the other cores. 

Color and composition of coarse fractions proved to be useful 

physical factors for describing the sediments. Color of both wet 

and dry samples was described and appears ,in the descriptions in 

Appendix B. Much of the coarse fraction of the upper units consisted 

of plant fragments and mollusk shells. 
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Some characteristic features were also useful in correlation of 

units. Lower portions of gyttja in the open lake cores have been 

so compacted that the sediment has a very low moisture content and 

has developed a "rubbery" quality which is more apparent in the 

slightly calcareous gyttja than in the non-calcareous gyttja. It is 

a gradational feature decreasing toward the suiface. 

A second characteristic feature occurs on the bedding planes in 

unit D, and unit VI of core C-Lk-2. This is a crisscross pattern 

of compressed calcareous tubes, impressions of these tubes, and 

some associated plant fibers. These are the remains of calcareous 

coverings of Chara stems lying on bedding planes. Frequently associ­

ated with this checkered pattern are Chara oogonia and sparse, frag­

mentary snail shells. These characters indicate deposition similar 

to that occurring at present in the transition zone of the shelf 

slope. 

Finally, unit E in cores C-I-1 and C-IV-2 has a basal zone 

containing numerous wood fragments and probably logs. A large 

piece of wood was recovered from the core barrel in this zone 

provided sufficient material for a radiocarbon date. This zone 

is significant in that it provides a datum traceable, at least in 

part, in both bogs. It is essentially the only link between se~i­

mentation in the northern and southeastern bogs. Hopefully, future 

work will link this zone with correlative sediments in the open 

lake cores. 

Chemical description of cores.--Due to the varied character of 

Holocene sedimentation in Glovers Pond, it was found that some sedi­

mentologic changes, not otherwise discernable, were clearly differenti-
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ated by chemical analysis. The same factors analyzed in present 

sediments were analyzed in the cores. 

The littoral zone of Glovers Pond is sensitive to some condi­

tions which do not affect the profundal zone during any one period 

of general environmental uniformity. On the other hand, the pro­

fundal sediments reflect some major environmental changes which 

are apparently not recorded by littoral or transitional sediments, 

although deposition in the littoral zone may be concinu0us. If 

only one core from the edge of a lake were used to describe the 

post-glacial environmental and sedimentological history of a lake, 

a major environmental change could easily be overlooked. A sequence 

of similar sediments representing a depositional continuum could 

contain a climatic change or environmental discrepancy of great 

pertinence to the geologic history of a region. An interpretation 

is here made that such a climatic change did occur during deposi­

tion of the bog sediments of Glovers Pond. It is recognized by 

comparison of chemical analyses of sediments from both bog and 

lake cores. 

Figures 35, 36, 37, 38, and 39 show the chemistry of Glovers 

Pond cores. In Figures 35, 36, and 37 the general configuration 

of the curves indicate similar chemical changes in each of the 

three bog cores, although unit thickness may vary from one core 

to the other. These chemical similarities indicate that like 

units were deposited under like conditions but not at the same 

time. 

In like manner similarities exist between cores C-Lk-1 and 

C-Lk-2, but they do not agree in their upper portions. This is 
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because core C-Lk-1 was taken farther from shore than C-Tk-2 and 

was not influenced by the advance of the "transitional sediment" 

zone of higher carbonate. 

The major environmental change is recorded in unit VI of 

core C-Lk-1 where high (greater than 70%) carbonate values are 

found at a station where present carbonate deposition totals but 

a few percent. It is thought that this change is caused by lowered 

water levels at some time during the history of the la~c. It 1s 

marked in core C·-Lk-2 by higher carbonates in unit VI. Figure 39 

indicates that this condition is not prolonged upward in the core; 

instead, the carbonate values drop slightly and then increase 

toward a second maximum rather than continuing a gradual decrease 

in carbonate content as is the case in core C-Lk-1 (Figure 38). 

This decrease is masked by the advance of the base of the shelf 

slope into the area of core station C-Lk-2 shortly after the 

carbonate decrease began. The true picture of conditions is 

recorded only in core C-Lk-1 from the profundal zone .. 

At first, one would expect this lowered water level to appear 

as an influx of organic matter in the bog cores. It would be 

recorded by higher values of percent total nitrogen. This 

condition probably is present somewhere between stations C-IV-1 

and C-IV-2, but neither of these stations showed such an influx, 

perhaps because peat deposition had already begun at the latter 

station while marl deposition had hardly begun at the former. 

The lowered lake level simply served to stimulate marl deposition 

in the area of station C-IV-1. Thus an environmental discrepancy 

was created in the bog sediment sequence. Without utilization of 
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chemical analyses of sediments from both bog and lake cores this 

climatic change would not be so readily apparent. 

Paleonto_logy of the cores. --The post-glacial units, particularly 

the marl, in the bog cores contain numerous macro- and microfossils 

representing both plants and animals. Some of these are useful 

stratigraphic indices within the basin. Ch?_~ oogonia and F0i2_tj}1alis 

can be used as indices of post- and pre-marl deposition. The primary 

macrofossils are mollusks found almost exclusively in the marl unit E. 

A detailed study was made to determine whether the mollusks, 

particularly the gastropods, could be used to delineate periods of 

environmental change not recorded by sedimentary change in the area 

of marl deposition. It was hoped that some gastropods would be 

sensitive to such changes as l1igher water temperatures or increased 

alkalinity, and would thus indicate environmental discrepancies by 

variations in the numbers of each species with respect to the total 

number of individuals present. With this in mind the following fauna 

was identified from core samples: 

Aquatic gastropods 

Helisoma £~E~anulatum (Say) 
_Heliso1~ ancep~ (Menke) 
Gyraulus Earvus (Say) 
F~?~~Eia obruss~ (Say) 
Physa sp. 
Amnicola limosa Say 
Valvata t-~i~rinata (Say) (tricarinate, bicarinate, 

and unicarinate forms) 
Valvata lewisi Currier -----.... 

Ferrissia sp. 

It will be n6ted that this fauna is similar in most respects to 

that given for the present lake. However, Valvata tricarinata and 

its bicarinate and unicarinate forms were not found alive at present. 
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Valvata lewisi was not recorded alive either, although the surface 

sediments contain many shells of this form, indicating that perhaps 

it was overlooked. ferrissia was also not found in the lake pr8sently 

and is represented in the core fauna by only one specimen. 

In order to interpret fossil data in unit E, the marl wa.s sub-

divided into 15 or 30 cm sections, all of 4.5 cm diameter, and the 

number of adult, or nearly adult, individuals of each species was 

counted in each section. Nuniliers of specimens of ea~h s~ecies were 

tabulated as percent of the totai number of individuals for each 

section. This process was carried out for transitional sediment 

units as well. In all, more than 2,872 individuals were examined 

from the three bog cores. Representatives of the fossil fauna 

are shown in Plate 1. 

Data from these analyses are presented in Figures 40, 41, and 

42. At present no correlations within the marl units have been made 

on the basis of these data. Of significance is the shell morphology 

of the Valvata complex. Changes seem to indicate that V~lvata passes 

from a tricarinate to a bicarinate to a unicarinate and finally (if 

the present fauna is considered) to an acarinate form from the bottom 

to the top of unit B. As has been mentioned, the marl units represent 

a lithofacies and not a unit of contemporaneous deposition throughout; 

thus unit Bin cores C-IV-2 and C-I-1 is older than in core C-IV-1 

(as shown by absence of the wood layer in core C-IV-1). Consequently, 

the data in Figures 40, 41, and 42 must be' combined vertically in 

order to present a complete sedimentary sequence. When examined in 

this manner the gradual decrease of the tricarinate fonn, and 

eventually of the bicarinate form, becomes apparent. These are 
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PLATE I 

POST-GLACIAL MOLLUSCA FROM 
UNITE (MARL) OF CORES C-I-1 and C-IV-2, 
AT GLOVERS POND, JOHNSONBURG, NEW JERSEY 

(ALL SPECIMENS ENLARGED APPROXIMATELY 3\X) 

Figures 1 and 2. Gyrauh1s ).Jc.t.i:VUS (Say). C-IV-2, 3.2 meters deep, 
UND Nos. 13,110 and 13,111, respectively. 

Figures 3 and 4. Valvata l_ewisi Currier. C-I-1, 2.8 meters deep, 
UND Nos. 13,112 and 13,113, respectively. 

Figures 5 and 6. Valvata tricarinata (Say). (bicarinate form). C-I-1, 
2.9 meters deep, UND Nos. 13,114 and 13,115, respectively. 

Figures 7 and 8. Valvata tricarinata (Say). (tricarinate form). 
C-IV-2, 3.8 meters deep, UND Nos. 13,116 and 13,117, 
respectively. 

Figures 9 and 10. Amnicola limosa Say. C-IV-2, 3.2 meters deep, UND 
Nos. 13,118 and 13,119, respectively. 

Figures 11 and 12. Fossaria obrussa (Say). C-IV-2, 3.2 meters deep, 
UND Nos. 13,120 and 13,121, respectively. 

Figures 13 and 14. Helisoma companulatum (Say). C-1-1, 2.9 meters 
deep, UND Nos. 13,122 and 13,123, respectively. 

Figures 15 and 16. Helisorna anceos (Menke). C-I-1, 2.9 meters deep, 
UND Nos. 13,124 and 13,125, respectively. 

Figures 17 and 18. Physa sp. C-IV-2, 3.0 meters deep, UND No. 13,126. 

Figure 19. Sphaerium rhomboideum? (Say). C-IV-2, 3.2 meters deep, 
UND No. 13, 127~ 

Figure 20. Pisidium ferrugineum? Prime. C-I-1, 2.8 meters deep, 
UND No . 13, 128 . 
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replaced by a unicarinatP form ,vhich grades to the acc:irinate form 

found iri the present environment. This ch2.ngc~ rn2y be ,-::n artifact 

of the counting method used tl1ough, at present, I do not believe 

that to be the case. These results (if, in fact, they represent 

real changes) are interpreted to be local and environmental, but 

at the same time evolutionary, since they probably reflect changes 

within a population that is a breeding continuum of Valvata tricar-

i1::::ta. 

Further work at a later date with various paleontological 

factors at Glovers Pond will undoubtedly provide useful environ-

mental and perhaps chronologic data. Diatoin~ have been examined 

sparingly by the writer and will be studied further at a later 

time. T~ey may, when coupled with pollen data, give important 

envirom11ental information from unit C and the lake units which are 

barren of macrofossils. Only one undetermined species of ostracod 

was recorded from the cores indicating that ostracods probably are 

not of paleontological significance at Glovers Pond. It is hoped 

that future work can be done on the fossil forms that have been 

only briefly mentioned here. 

Origin and Glacial History of the Glovers Pond Basin 

Initially, t~e basin now occupied by Glovers Pond originated by 

erosion of a fault zone in the Kittatinny Limestone to form a valley 

greater than 70 feet (probably greater than 100 feet) deep. Successive 

glaciations s~oured the valley and helped to enlarge side embayments 

by removal of less resistant bedrock such as the Jacksonburg units in 

the northern part o~ the basin. This pre-Wisconsinan valley probably 

followed the southwest trend of the fault prior to glacial modification, 
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a course which is not reflected in the current drainage outlet of 

the lake. 

Wisconsin glaciers covered the area to a thickness estimated 

by Salisbury (1902, p. 64-67) to have been between 2,100 and 2,600 

feet. Theoretically the ice covered Jenny Jump }~untain, 1,134 feet 

high, about 2 miles south and west of the lake. It is the writer's 

interpretation that after the ice began to thin, but while the front 

was still active beyond Glovers Pond, crevassing and shearing occurred 

in the glacier, particularly near the southe~n end of what is now the 

lake basin. Thick till accumulated in this crevasse as indicated in 

Figure 43. 

When the ice front had melted back to the vicinity of Glovers 

Pond, this accumulation of till was left as a crevasse filling or 

kame-like ridge, across the southern end of the basin. At the same 

time the central portion of the lake basin was occupied by a block 

of stagnant ice. Salisbury (1902, p. 400) indicated that such stag­

nant blocks were connnon in the more isolated valleys of the area. 

Sediment sloughing off the edge of this ice block was deposited along 

the present lake shore. Finer sediments have been winnowed from 

these deposits leaving only the larger cobbles and boulders ringing 

the basin (Figure 9). This slumped-off material may have taken the 

form of a thin kame deposit when it was first deposited. 

At the time that the ice block lay in the lake basin, streams 

of glacial meltwater were flowing into the basin from the north and 

northeast. These deposited the restricted sand facies (unit B, core 

C-I-1) found in the northeast bog. The course of the stream supplying 

this sand is marked by a small hanging valley on a dolostone ledge 

with the remnant of a plu::.1gepool at its base on the north edge of this 
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Figure 43.--Diagramatic interpretation of late glacial 
history of the Glovers Pond basin. 
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bog (location "V", Figure 5). 

The crevasse filling served as a dam and diverted drainage water 

northwestward out of the basin. This course wo.s also followed by melt­

water leaving the basin as indicated by a lag pavement of cobbles and 

boulders which underlies the mud deposited in the old millpond during 

historic times. A similar cobble pavement also lies along a valley 

to the southeast of the basin, indicating that a second, slightly 

higher drainage may have been used by meltwater. Because of the 

presence of the ice block and large quantities of meltwater, lake 

levels were higher in glacial times. This is proved by the presence 

of glacial clay found in an auger hole only two feet below peat and 

soil on the very edge of the lake basin (Figure 31). 

Glacial influences on the basin ceased when the stagnant ice 

finally melted, a process that may have taken one or two thousand 

years to complete as demonstrated (Clayton and Freers, eds., 1967, 

p. 36) in the case of stagnant ice in North Dakota. Ther period of 

melting likely was shorter at Glovers Pond since supra-glacial drift, 

insulating the ice, was probably not as thick as in North Dakota. 

Melting left a kettle hole within the larger basin of the lake. 

History of Post-glacial Sedimentation 

After the ice melted, the water level dropped because of a lack 

of source water. Springs and rainfall became the only water sources. 

The lake bottom was covered by a uniform deposit of glacial silt and 

clay, and the lake was probably oligotrophic. Sedimentation during 

this stage is represented by units C and III (Figure 31), the dark, 

organic-rich silt bed found throughout the lake basin. Erosion of 

surrounding glacial deposits was the source of the silt. The lake 
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water \vas well mixed and cooler much of the surr.mer. The presence of 

Fontinalis in the silt shows that the water was clearer than at present, 

allowing light penetration to greater depth since this plant requires 

more light than currently reaches the bottom. This plant requires a 

good supply of free COz which supports the interpretation that the 

lake was mixing better than at present. Fontinalis was not found in -·-------

the present lake. Because of the general lack of fossil remains 

(other than Fontinalis) it is believed that few meni:J0:.:s <.:f the present 

flora and fauna \vere then living in the lake. Silt deposition in the 

oligotrophic lake was slower than sediment deposition in the present 

eutrophic environment. This condition may have lasted 300 to 500 

years although there is no evidence at present to substantiate this 

estimate. 

More complex patterns of sedimentation, similar to the present, 

began after the post-glacial silt (units C and III) was deposited . 

Water in the lake became stratified due, perhaps, to climate warming, 

decrease in wind velocity, growth of thicker and taller forests, or 

some combination of these factors. The climatic warming caused the 

lake to become eutrophic. 

Marl deposition then began around the edge of the basin while 

gyttja deposition started in the profundal zone. Aquatic plants au<l 

animals, similar to those present, now were i.nhabiting the lake at 

that time. Facies relationships between marl, transitional calcareous 

silts, and gyttja were formed. Eutrophic sedimentation began approxi­

mately 11,560 years (+850 or -750 years) B.P. as shown by a radio-

carbon date from the wood zone in the base of unit E of core C-I-1 

(I-2793-S, Isotopes, Inc.). A date of this age would be considered 
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Two Creekan (Frye and Willman, 1960, p. 2). This new d~position was 

more rapid than the former organic silt deposition. 

Stimulated by some periods of warmer climate, marl spread over 

and eventually filled the more restricted, shallow embayments of the 

basin. A radiocarbon date from the base of the youngest peat, that 

found in core C-IV-1, gives an age of 2,080~10Q years B.P. (I-2792, 

Isotopes, Inc.) for the beginning of peat deposition at that spot. 

Some estimates vf t'.1e time ;:-e~:.dred to fill the southwest bog 

may be made from these data. The areal distance f~om station C-IV-1 

to station C-IV-2 (where the wood zone in unit E can be found) is 

approximately 274 meters. The shelf has migrated this distance in 

9,480 years, or it has migrated lakeward at a rate of 2.9 cm per year. 

This rate.has little practical meaning except as an average figure, 

since shelf migration has probably been faster during times of low 

water, and slower during times of high water. 

Although the pattern of sedimentation has remained stable during 

most of post-glacial time, several anomalous units are present in the 

open-lake cores. These may be summarized here from previous sections 

of this chapter. Unit VI in core C-Lk-1 (Figure 31) is one such 

anomaly. Presently, essentially no calcium carbonate is being deposit­

ed in this region of the lake, alchough, in the past, sediment deposited 

in the profundal zone contained as much as 70% Caco
3 

as shown by the 

chemical data presented in Figure 38. 

The same anomaly is also shown in unit VI of C-Lk-2 (Figure 39). 

Such a high carbonate phase was probably caused by a lowering of the 

lake level at which time the entire lake became supersaturated with 

calcium carbonate. This condition was gradually lessened as the 
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chemical curves show, but a second increase occured shortly thereafter 

in core C-Lk.-2. 

The second increase occurred when the "transitional" calcareous 

silts from the shelf slope began to encroach on this portion of the 

lake. Any further changes in lake level would be masked by this 

sediment just as the change here described was masked in the bog cores. 

Since this influx of carbonate, post-glacial sedimentation has con­

tinued without much ch~ngs. 

Peat succession has reached the woody stage in the northeast 

bog although the southwest bog is still being covered with sedge 

and reed peat. This indicates that the tree covered bog is older 

than the sedge covered bog. An attempt was made to determine by 

dendrochronology the age of forest growth on the bog. These efforts 

proved somewhat frustrating in that no very old dates were obtained 

contrary to my expectations. Red cedars on the bog gave ages of 

55 and 70 years and this is thought to be a reliable estimate for 

first encroachment of cedar into the bog. Cores from larch gave 

ages of 17 to 20 years. These are probably not ieliable ages for 

first growth larch and may indicate that these are second or third 

generation trees on the bog, or improper ring counting by the writer. 

It will suffice to say that tree growth similar to that at present 

has been going on for at least 70 years on the northeast bog whereas 

the tree succession is only now beginning on the southwest bog. 

Changes in Morphology 

Some morphologic changes in the lake caused by post-glacial 

sedimentation can be described. The present lake occupies an area 

of approximately 54,343 square meters. In the past, the maximum 
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surface .J.rea of the basin w.:1s 169,917 square meters when the lake 

was at its highest level. The present shoreline length of 1,360 

meters is only 32. 310 of the former maximum length of 4,230 meters. 

Formerly the shoreline development (DL) was 2.69 indicating 

that the shape of the lake deviated a great deal more from a perfect 

circle (DL=l) than does the present shape (DL =l. 65). Most of the 

former irregularities have been filled with sediment. The profound 

effects of the largely biochemical sediment as a basin-filling agent 

at Glovers Pond are eviJent from this comparison. 

Paleoclimatic Interpretations 

Chemical analysis of core sediments indicates that climatic 

fluctuations have occurred several times in the past 12,000 years. 

Because these climate changes have not been dated by radiocarbon 

techniques, no absolute chronology of post-Wisconsinan climatic 

intervals can be proposed. Estimates of relative lake levels (as 

affected by climate) are shown in Figure 44. The best single cli­

matic interpretation for northern New Jersey is that of Niering 

(1953) who based it upon pollen profiles. 

Cary glaciers began to retreat between 13,000 and 14,000 

(Flint, 1957) years ago. For perhaps 1,000 years after this retreat, 

Glovers Pond was oligotrophic, indicatiug a cool, moist climate with 

high lake levels. 

Climatic amelioration and lower lake, levels are shown by the 

first influx of carbonate (unit III). Deevey (1951, p. 197) has 

used such carbonate layers to infer climatic changes. When this first 

occurred in Glovers Pond the lake became eutrophic. This probably 

represents the beginning of full-scale marl deposition in the ~hallower 
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Figure 44.--Diagramatic interpretation of 
high and low water levels iD Glovers Pond based 
on chemical analyses of core C-Lk-1. 
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areas~ If so, the warming took place around 11,500 to 12,000 years 

ago based on the dated wood in unit E. 

A decline in carbonate once again (unit V, Figures 38 and 39) 

indicates more moist, perhaps cooler, conditions and higher lake 

levels. 

A large climatic fluctuation is shown by the high (greater than 

7010) influx of carbonate in unit VI of core C-Ik-1 where such deposi­

tion is currently restricted by the undersaturated condition of the 

hypolimnion. This marl dep~sition in the profundal zone is caused 

by lowering lake levels at least 10 to 12 feet below those of the 

present. Such sediments may record events of the Hypsithermal 

Interval of sustained warm climates beginning between 9,000 and 6,000 

years ago (Flint and Deevey, 1957). 

The lake rose gradually to a level a few feet below that of the 

present about 2,000 years ago when peat deposition began at the site 

of core. C- IV-1. Since that time no major fluctuations have been 

recorded. 

Historically, the lake must have been about two feet higher 

when the millpond was darmned in the late 1700's. Recently, drought 

has caused lake levels to fluctu<lte as much as two feet during a 

si:-,gle surrnnE:r. Such local effects lend credence to the idea that 

changes recorded by sediments in the lake have been of a larger scale, 

since the smaller recent changes have not had major effects on the 

type of sediment being deposited in the ~rofundal zone. Dating of 

unit VI in core C-Ik-1, as well as pollen analysis, should show that 

the sediments of Glovers Pond record a clear history of the post­

glacial climate of northern New Jersey. This should be explored in 

greater detail. 
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SUMMARY OF CONCLUSIONS 

The following conclusions regarding the geology and limnology 

of Glovers Pond are offered: 

1. Glovers Pond is a temperate, eutrophic, dimictic lake, 

strongly stl.·.qtified during the summer and weakly stratified during 

the winter. The lake has a maximum depth of nine meters. 

2. The water supply of the lake comes from precipitation 

and from springs entering the basin along the northern edge. 

3. Within the basin there are presently four distinct zones 

of sediment type. From shore to basin these are: peat, marl, 

calcareous silt ("transitional sediments"), and gyttja. These 

zones interfinger at their edges and become gradational from one 

to the next. 

4. Primary deposition of calcium carbonate occurs on a shallow 

shelf by chemical and biochemical precipitation on the alga, _ghara. 

This plant is of prime importance in Caco
3 

deposition, maintenance 

of the shelf slope by stabilization, and as a habitat for mollusks 

and other organisms. 

5. Nine species of aquatic gastropods and nine species of 

terrestrial gastropods inhabit the lake and surrounding woodland 

at present. Three bivalves also inhabit the lake. 

6. The gastropods Va!vata lewisii, Valvata tricarinata (tri­

carinate, bicarinate, and unicarinate forms) and Ferrissia sp. were 

found in core sediments but were not taken from the living fauna. 

123 
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7. The lake lies in a glacially modified fault v~lley, once 

more than 70 feet deep. The deepest part of the basin held a block 

of stagnant ice for some length of t~ne during deglaciation in late 

Wisconsinan time. 

8. Six stratigraphic units are recognized in the bog sediments 

and eight in the lake sediments. The oldest marl unit has a radio­

carbon age of approximately 11,560 years B. P., whereas the youngest 

peat unit has a radi,ca~bon age~£ 2,080~100 years B. P. 

9. The lake is being encroached upon by marl from the shelf 

at an average horizontal rate of 2.9 cm per year. This is only an 

average rate and actual filling occurs more rapidly at times of 

lower water and more slowly when water levels are high. 

10. Post-glacial morphologic changes in the shape of Glovers 

Pond are due primarily to infilling of the basin by sediments which 

are largely of biochemical origin. This indicates the importance 

of biochemical relationships as the major sediment producing factors 

in this, and perhaps other, "marl lakes" of northern New Jersey. 

11. At least two intervals representing climates warmer and 

drier than that of the present are indicated by high calcium 

carbonate values in the sediment of core C-Lk-1 in the profundal 

lake basin. One interval represents~ major climatic amelioration 

that may mark the Hypsithermal Interval in northern New Jersey. 

Future work on the sediments of Glovers Pond will perhaps 

reveal further environmental data for the ~ost-glacial of New 

Jersey if sufficient age determinations can be obtained. 
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APPENDIX A: METHODS OF STUDY 

Sampling :Methods 

Water samples 

Samples of water from the open l~ke were taken by a Kemmerer 

sampler having a volume of 1200 cubic centimeters from the epilimnion, 

metalimnion, and hypolimni.on. Most samples were taken at station Lk-1 

(Figure 23), but some were occasionally drawn from station Lk-3. 

Samples were placed in one-pint polyethylene bottles for transport to 

the laboratory. At stations Lk-2 and Lk-1+ water samples were collected 

from depths of 10 to 30 cm directly in polyethylene bottles. Samples 

were analyzed within 2 hours (usually within 20 minutes) after collec­

tion. 

Bottom samples 

Samples of the present 12..ke sediments were taken by means of an 

Eckman Dredge or grab sampler having a cross-sectional area of 196 

square centimeters. Sixteen ounce heterogeneous samples were put in 

Nasca "Whirl Pac" plastic bags and sealed to exclude air moisture until 

they could be analyzed at the University of North Dc1kota. The depth­

to-bottom was recorded at each of the 36 stations to be used as an aid 

in bathymetric mapping. 

Bathymetry_ 

Basic profile data were gathered with a Bendix DR-2 sonic depth 
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recorder which produced a continuous bottom profile across the lake 

basin. These data were supplemented by control data from grab sampling 

as already discussed. 

Temperature 

Thermal conditions in Glovers Pond were measured daily (when 

possible) using a thermistor made by Whitney Underwater Iustru.ments, 

J~c. (San Luis Obispo, California). This instrument recorded accu­

rately temperature changes of 0.1°c and may be read to units of 0.01°c 

with some confidence. Temperatures were measured at intervals of 0.5 

meter, primarily at stations Lk-1 and Lk-2. Readings we.re generally 

made at 4:00 P.M. 

Turbidity 

The depth of light penetration in Glovers Pond was measured with 

a secchi disk having a 10-inch diameter. Penetration was recorded as 

meters of depth to which the disk could last be seen. Readings ·were 

taken at 12:30 P.M. about once a week. 

Precipitation 

A rain guage was stationed in an open area behind the home of the 

Resident Manager of the camp. A tubular rain guage with a 3-inch 

diameter catch basin and calibrated to read in tenths of inches was 

used. Precipitation as snow was recorded by catching the snow in the 

guage and allowing it to melt then reading the guage as with ~ain. 

While re2dings may not always be precise, they are felt to be accurate 

enough to provide a first approximation of values for Glovers Pond 

during 1966. 
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Auger samples 

Where it was necessary to study shallow sub-surface sediments, 

a hand-operated posthole auger able to penetrate five feet of sedi­

ment was used. This instrument brought up good, unmixed s2mples from 

bogs and fields. Many of these were saved for later analysis, and for 

use in correlation of lake and bog strata. 

CorE:s 

Five cores with penetrations of 20 to 28 feet were taken; three 

in the bogs, and two in the open lake. Cores were made with a modified 

Colinvaux (1964) corer (as described by Callender, 1968), a hand-

injected, piston device, which takes one-meter or two-meter lengths of 

core at each injection as desired. Core passes through a cutting head 

into a 1~ inch (outer diameter) clear plastic core-liner. This plastic 

tube is then removed from the core barrel and corked shut and sealed 

with tape to retain sediment and exclude air. Some compaction of sedi-

ment was caused during coring but this may be corrected for during 

logging of the sediments. 

Cores from the open lake were made from a floating platform with 

a work area of 81 square feet buoyed up by two 9 X 3 foot sections of 

6 inch thick styrofoaru. This platform was very sturdy (even in 30 feet 

of water) when anchored firmly by all four corners. In the open lake 

it was necessary first to case the hole with 4 inch diameter plastic, 

electrical conduit so that the hole would not be lost during instal­

lation of new core-liner. This system proved to be very satisfactory . 

Three cores were extruded, logged, and bagged at the camp; two 

were returned to the University of North Dakota intact and later 

extruded in the laboratory. 
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Analytical rk:thods 

Physic a 1 ana LY-~-~_§. 

Twenty-gram samples of sedirni2nts suitable for particle-size 

analysis were dispersed in Cal3on (sodium hexametaphosphatc) for 

two months, wet sieved on a 4-phi (62 microns) sieve into one-liter 

cylinders, and mixed thoroughly. Aliquots of this mixture were 

taken at prearranged times during the settling of the sc.climcnt. 

Times were chosen according to Wa<lell's rno<lification of SL.oi<.e's Lm1. 

The aliquots were dried and weighed to the nearest milligram. 

Sediments coarser than 4-phi were dried and sieved mechanically 

on Tyler Standard screens arranged in whole-phi intervals from 

-J-I+ to O phi. These size fractions were also He.ighed as above. 

These data were subjected to computer analysis by the program 

utilized by Callender (1968). Results were plotted on the basis 

of percentage content of sand, silt, and clay according to the 

method of Shepard (1.954). 

Color and texture 

Color of sedim2nts was examin2d for both wet and dry samples. 

Values given for color are those of the }funsell (1954). Rock colors 

were taken from the rock-color chart (Goddard, .§! _?l., 19!+8). Samples 

were exaillined stereoscopically at magnifications of 20X, 40X, ~nd BOX 

for analysis of coarse fractions, fossils, and sedimentary textures 

and fabrics. At this time macro- and microfossils were picked fro1n 

the sediment. 

Ch cm i ca 1 an c1. l_y_~c s 

Water chemical values were measured at a laboratory established 

on the camp property. Al~alinity was measured by titrating 50 ml 
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samples with .023 N sulfuric acid to the phenolpthalein and methyl 

purple endroints. Alkalinity was calculc1ted as 1r:i.g/l co3 and HC03. 

Chloride concentration was measured by titrating 50 ml samples 

with AgN0
3 

using K2Cr 2o4 as an indicator. At the endpoint the 

solution changes from yellow to a salmon-pink color. 

Measurement of pH uas made with a Taylor comparator which could 

be extrapolated to the nearest 0.1 pH unit. 

Hardness and oxygen concentration measured using the techniques 

and reagents described in the manual of water and sewage analysis 

procedures published by the Hach Chemical Company, Ames, Iowa. Hard­

ness was measured as calcium and magnesium content in milligrams per 

liter. Oxygen measurements were calculated as part-per-million dis­

solved oxygen and were later converted to mg/1. Oxygen titrations 

were taken, usually at 12:00 noon. 

Chemical analyses of grab samples and core sediments were 

carried out at the University of North Dakota during the six months 

following the field season. Each of 67 samples were analyzed for 

total nitrogen, total carbon, and calcium carbonate. Calcium carbonate 

content was measured by acidifying samples with a known volume of 

H
2
so

4 
and back-titrating with NaOH to determine the amount of acid 

that had been reacted with the carbonate. Generally one-gram samples 

of dry sediment were used for this procedure. 

The values of total nitrogen and total carbon were measured using 

the technique described by Callender (19~8, p. 283-297). This method 

required only a few milligrams (generally 18 to 30) of the dried sample 

which had previously been powdered in a Spex ball mill. Powdered 

sample was reacted for 3 hours in evacuated flasks with an excess of 

chromic acid to oxidize organic and inorganic constituents. 
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The COz evolved was collected in absorption tubes containing 

NaOH and back titrated for values of total carbon. Organic carbon 

content was calculated from this value by subtracting the value ob­

tained for inorganic carbon in the calculation of Caco3 content. The 

residue from the oxidation of the sample was analyzed by the Kjeldahl 

method for calculation of total nitrogen content. Several of the 

refinements of these techniques were developed by Callender (1968); 

he estimated oxidation to be 85 to 90% complete in total r.,1,bnn 

analysis. He found precision of the method to be• 2% of the mean 

value when run on duplicate sediment samples (Callender, 1968, p. 287). 

He found precision on the nitrogen values to be within •5% of the mean 

value (p. 288). The writer found his accuracy to be .l-2% and --1-6% of the 

mean values for total carbon and total nitrogen respectively. 

Finally samples for radiocarbon dating were wrapped in aluminum 

foil and refrigerated until they could be used. These were eventually 

sent to Isotopes, Inc. in Westwood, New Jersey, for analysis. 
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APPENDIX B: SUPPLEMENTAL PHYSICAL AND CHEMICAL DATA 

Additional physical data are given as descriptive lithologic 

sections of the cores. Compositional values for present lake 

sediments are listed by station (Figure 23) in Table 9. These data 

provide sufficient imfor~ation for characterization of the present 

sedimentary environment. 

The past environments have been characterized on the basis 

of chemical values which are presented in Tables 14 through 18. 

Present water chemical values for st.:tion Lk-1, in the open 

lake, and station Lk-2, on the shel.f, are presented in Tables 10 

through 13. 
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TABLE 9 

CHEMICAL VALUES FOR BOTTOM SAMPLES 

% Total % Total cl 
Station Carbon Nitrogen N % Caco3 

1 18.39 1. 94 5.87 58.30 
2 17.03 1.07 7.95 71.00 
3 15.84 .78 7. 77 81.40 
5 19.45 1.34 8.66 65.65 
6 19.78 1. 37 8.80 64.40 
7 17.36 1. 71 4.91 74.80 
8 15.95 1.16 5.47 80.00 
9 15.34 .51 10.73 82.30 

10 15.22 .58 7.74 89.40 
11 14.57 .79 7.20 74.05 
12 21. 26 1. 22 11. 72 58.05 ~· 13 29.20 2.75 9.70 21.10 
14 25.81 2.00 7.63 87.95 
15 16.37 .99 7. 96 70.80 
16 17 .01 .71 11.96 70.20 
18 63.76 3.49 16.24 59.05 
19 37.40 4.24 8.74 3.00 
20 18.31 2.03 5.46 60.70 
22 39.88 4.96 8.02 3.15 
23 33.08 4.57 7.20 1.60 
24 31. 30 3.73 8.30 2.85 
25 19.22 .99 10. 06 77. 20 
26 22.19 1. 67 9.29 55.60 
27 15.35 .87 7.06 76.65 
28 14.35 .60 8.87 75.25 
29 31. 71 2.59 12.10 2.95 
30 22. 77 1. 60 10.36 51. 65 
31 31..72 2.69 10. 98 18 .15 
32 17. 52 1.17 8.41 64.00 
33 35. 72 2. 72 12. 77 8.15 
34 14.41 .44 9.52 85.15 ... 
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TABLE 10 

WATER CHEMICAL VALUES FOR THE EPILIMNION AT STATION 
LK -1 , 196 6 , IN MG/ L 

Date C03 Hco; Ca++ Mg 
++ 

pH 

7/2 27.6 140.3 8.6 

7/5 22.2 140.3 ~.5 

7/6 5.4 151. 9 41+. 0 18.9 8.5 

7/12 10.8 143.4 43.2 21. 6 8.3 

7/14 22.2 142.7 8.4 

8/14 10.8 247.6 8.3 

TABLE 11 

WATER CHEMICAL VALUES FOR THE 1'IETALIMNlON AT STATION 
LK-1, 1966, IN MG/L 

Date co3 HC03 Ca 
++ Mg++ pH 

7/2 22.1 167.8 8.4 

7 /5 16.6 156. 7 8.4 

7/12 10.8 157.4 42. l1- 21.1 8.3 

7/14 None 185.4 8.1 
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TABLE 12 

WATER CHE:MICAL VALUES FOR THE HYPOLHIN:ION AT STATION 
LK-1, 1966, IN MG/L 

Date 

7/2 

7/5 

7/12 

7/14 

8/14 

========.:====== 

None 

None 

None 

None 

None 

HCO 3 

201. 3 

190.0 

185.4 

190.9 

192.2 

+t 
Ca 

50.4 

Mg++ 

19. 7 

pH 

7.3 

7.2 

7.5 

7.3 

7.3 
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TABLE 13 

WATER CHEMICAL VALUES FOR STATION LK-2, 1966 IN MG/L 

Date 

7/2 22.2 128. 7 

7/5 27.0 87.2 

7/14 33.0 106. 7 

7/19 27.6 129.3 

7/20 27.6 134.8 

7/21 33.0 87.20 

7/25 22.2 112. 2 

7/28 27.6 134.8 

8/1 24.8 98.2 

8/12 22.2 120.8 

8/4 41.4 92.1 

8/10 24.8 111. 6 

8/12 27.6 129.3 

8/13 27.0 109.8 

8/16 19.2 95.8 

8/19 16.2 164.1 

8/23 16.8 123.2 

8/29 16.8 123.2 

Ca++ 

36.0 

44.0 

40.8 

36.8 

33.6 

32.0 

58.4 

43.2 

++ 
Mg 

155.0 

18.7 

20.2 

18.2 

16.1 

21.1 

8.64 

15.4 

pH 

8.8 

8.9 

9.0 

8.9 

9.2+ 

9. 2+ 

8.7 

8.5 

9.2 

8.9 

9.0 

9.1 

8.5 

8.9 

8.9 

8.7 

8.5 
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TABLE 14 

CHEHICAL VALUES FOR CORE C-I-1 

.. 
% Total to Total Cf 

Unit Carbon Nitrogen N % CaC03 

F 41.09 2.62 15.52 3.60 

16.49 .43 13.40 89.40 
E 

14.50 .31 11. 65 90.75 

D 14. 62 .30 17. 60 77 .85 

I 

-" C 5.54 .21 26.90 1. 30 

4 B 2.86 .10 23.40 4.35 



www.manaraa.com

141 

TABLE 15 

CHEMICAL VALUES FOR CORE C-IV-1 

% Total % Total cl 
Unit Carbon Nitrogen N % Caco3 

F 42.20 2 .81 14.93 5.90 

17.00 .09 14.45 95.60 

E 15.78 .24 18.54 94.45 

15.44 .32 13. 31 93.95 

D 19.99 .76 22.21 77 .80 

--· 
C 6.09 .28 21.54 1. 55 ., 

B 1. 61 .08 17 .01 6.35 



www.manaraa.com

142 

TABLE 16 

CHEMICAL VALUES FOR CORE C-IV-2 
Ii 

% Total % Total C/ 
Unit Carbon ~:iLrogeri. N % CaC03 

F 44.83 2. 70 16.43 3.90 

18. 56 .62 14 .16 81. 55 

E 16. 77 .51 14.86 76.65 

13.55 .35 10.57 82.10 

r 

I D 15.41 .67 13.34 53.85 
_., 

C 2.42 .39 6.00 .65 . 
B 1. 95 .07 9.00 11.00 
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TABLE 17 

CHEMICAL VALUES FOR CORE C-Lk-1 

• 

% Total % Total Cf 
Unit Carbon Nitrogen N % Caco3 

33.63 2.50 13.23 4.65 
VIII 

39.22 3.29 11.81 3.20 

VII 35.16 2.10 14.24 43 .85 

22.07 .92 14.64 71. 70 
VI 

20.64 .95 12.83 70.30 

*' ... 

V 32.97 2.61 12.40 5.05 . 
IV 11. 99 .59 15.66 23.05 

III 2.99 .30 9.00 2.50 

II 2.53 .09 6 .11 16.50 

..., 
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TABLE 18 

CHEMICAL VALUES FOR CORE C-Lk-2 
• 

% Total % Total cl 
Unit Carbcm Nitrogen N % Caco3 

16.26 . 72 8.4 85.05 

17.24 .90 8.2 82.25 
VIII 

15.54 .68 8.0 84.10 

16.55 .97 7.0 81.45 

VII 21. 21 1. 71 8.1 63.30 

_. 
11 

VI 15.87 .73 7.3 88.05 
. 

V 36.91 4.18 8.8 7.05 

IV 10.80 1. 2°3 6.6 67.05 

4.95 .44 10.20 3. 75 
III 

3. 77 .39 8.9 2.45 

II 3.09 .19 14. L~ 3.05 

... 
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F 

1. 7 meters 

E 

1.5 meters 

D 

0.2 meters 

C 

0.6 meters 

B 

2.5 meters 

A 

? 

1!+5 

LITHOLOGIC DESCRIPTION OF 
CORE C-I-1 

--··------------

Wood and sedge peat; wet color, very dark brown, 
10YR2/2; dry color, 10YR2/2; sedge peat becoming 
woody in the uppc-r portion; contact witt-. mc1.i.-l u1arked 
by a 6 cm gradational zone containing snails. 

Marl; wet color, light gray, 10YR7/2 (upper) to li6ht 
gray,2.5Y7/2 (lower); dry color, white, 10YR8/2; poor­
ly compacted near top to well compacted near bace, 
primarily silt sized particles of Caco3 ; contains 
many snails, one mus se 1 she 11, pl ant fibers, ct~~-1:~ 
stems and oogonia, ostracods, diatoms, and unidenti­
fied seeds; zone neay

4
the base contains wood frag­

ments which gave a C age of 11,560 +850 or -750 
years B. P.; lower contact abrupt. 

Calcareous, orga_nic silt ("transition2.l sediment"); 
wet color, dark gray, l0YR4/l; dry color, light gray, 
5Y7/l; compact, "rubbery", calcareous silt; contains 
numerous shell fragments, much organic matter, diato1"1sj 
shows crisscrossed pattern of _9hara stems which mark 
bedding planes. Lower contact fairly abrupt. 

Organic-rich silt; wet color, black, 5Y2/1; dry color, 
gray, 5Y5/l; compact, cohesive, non-calcareous silt; 
contains nwnerous plant fragments, many of Fontina~is 
(water moss); no mollusk shells; heddiug m2rked only 
by plant remc1ins. Luwer contact abrupt. 

Sandy silt, silty sa~<l, and silt; wet color, dark 
gray, 5Y6/l; dry color, gray, 5Y4/l; unit ~ivisiblc 
into upper sandy silt (.5 m) and lower sand and 
silty sand (2.0 m); sand grades upward from medium to 
fine and very fine. Lower contact gradational. 

Till; wet color, dark grjy, 5Y4/l; dry color, gray, 
5Y6/1; very compact silt and clay with pebbles. 

·------------------·------·-----------------·-----
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• F 

1.3 meters 

E 

3.3 meters 

D 

1.0 meters 

C 

. 
0.3 meters 

B 

1. 0 meters 

A 
? 
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LITHOLOGIC DESCRIPTION OF 
CORE C-IV-1 

----------~-------···---- ---·---------
Sedge peat; wet color, very dark brown, 10YR2/2; dry 
color, very dark brown, 10YR2/2; reed and sedge peat 
with gry?iational lower contact; base of this peat 
gives C • age of 2,080 years B. P. 

Marl; wet color, light gray, 2.5Y7/2; dry color, 
white, 2.SYb/2; poor to well compacted, silt sized 
particles of Caco3 ; plant fragmc.nts, Cha~ sterns, 
seeds, and diatoms present; many mollusk shells 
mark the bedding planes. Lower contact rather abrupt. 

Calcareous, organic-rich silt ("transitional sediment"); 
Wet color, 2.SYS/2, grayish brown; dry color, ligbl 
gray, 5Y7 / 1; compact, calcareous, "rubbe1 y", s i 1 t, 
containing many shell fragments; shows laminations 
marked by crisscrossed accumulatj_ons of Char~ sterns; 
oogonia ancl diatoms present. Lmver contnct rather 
abrupt. 

Organic-rich silt; wet color, very dark gray, 5Y3/l; 
dry color, gray, SYS/1; well compacted, non-calcareous 
cohesive, clayey silt; contains .I.ontinalis; no mollusk 
remians present. Lower contact abrupt. 

Sandy silt; wet color, gray, NS/0; dry color, gray, 
5Y6/l; cohesive; contains no mollusks or organic 
matter. Lower contact gradational. 

Till; wet color, 5Y4/l, dark gray; dry color, gray, 
5Y6/l; very compact clayey silt containing gravel, 
pebbles, and cobbles. 

------~---·--------~----· .. --~ 
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II 

LITHOLOGIC DESCRIPTION OF 
CORE C-IV-2 

----------~·--·--·-·-··-·--·-·-----·-·---
F 

2. 7 meters 

E 

2.0 meters 

D 

0.2 meters 

C 

0.5 meters 

B 

1.5 meters 

A 
? 

Sedge peat; wet color, very dark brown, 10YR2/2; dry 
color, very dark brcn.,m, 10YR2/2; recd and sedge peat; 
Lower contact slightly gradational. 

Marl; wet color, gray, 2.5Y6/2; dry color> white> 2.SY 
8/2; silt sized grains of Caco3 ; poorly to well com­
pacted; many mollusk shells, Ch.§:.!·a oogon:i.a, seeds, and 
ostracods present; base contains a zone of wood frag­
ments. Lower contact rath~r abrupt. 

Calcareous, organic-rich silt; ("transitional sediment"); 
wet color, light olive gray, 5Y6/2; dry color, light 
gray, 5Y7/l; compact, calcareous, "rubbery", silt; 
contains scattered fragments of mollusk shells, crisf:­
cros sed tubE~s of Ch~ sterns, and oogon ia; Lower 
contact c1.brupt. 

Organic-rich silt; wet color, dark olive gray, 5Y3/2; 
dry color, gray, SYS/1; compact, cohesive, non-cal­
careous silt and some fine sand; contains few rl2nt 
remains of Fontinali.s; no mollusk shells. Lowe.r 
contact abrupt. 

Silt; wet color, gray, 2.SYNS/0; dry color, gray, 
5Y6/l; compact, cohesive, clayey silt with some fine 
sand; no snails or organic matter. Lower contact 
gradational. 

Till; wet color, <lark gray, SY4/l; dry color, gray, 
5Y6/l; very con~act clayey silt with gravel, pebbles, 
and cobbles. 



www.manaraa.com

• 

L 

148 

LITHOLoqc DESCnIP1'ION OF 
CORE C-Lk--1 

----···--·-··-------·----------- ··--·-·------- ----- --·-----··---

VIII Gyttja, i:1et color: 5Y2/l black; dry color: 10YR2/2 very 
dark brmm, gelatinous organic ooze; no mollusks, con-

1. 2 meters tains fragments of oak leaf; louer contact gradational. 

Gyttja calcareous, wet color: 5Y3/2 dark olive gray; 
VII dry color 2.SYS/2, gelatinous organic ooze; slightly 

calcareous, slightly compacted, mottled color pattern, 
0.70 meters contains some snails. Lower contact rather abrupt. 

Ma~l (organic-rich), wet color: 2.5Y3/2 very dark 
VI grayish brown; dry color: 2.SY6/2 light brownish 

gray, slightly compacted, very calcareous, organic-
1.2 meters rich gyttja. Contains some snails, lower contact 

abrupt. 

V 

0.7 meters 

IV 

0.3 meters 

III 

0.4 meters 

II 

1. 5 meters 

I 
? 

Gyttja, wet color: 5Y2/l black; dry color: 2.SY3/2 
compact, noncalcareous, gyttja; contains ro snails. 
Lower contact abrupt. 

Gyttja (calcareous), wet color: 2.SY3/2 very dark 
grayish brown; dry color: we.11 compacted, slightly 
calcareous, organic gyttja. No snails present, 
lower contact rather abrupt. 

Silt (organic-ri~h), wet color: 5Y3/2 dark olive gray; 
dry color SYS/2 olive gray, very compact, noncalcareous, 
clayey silt with some fine sand. Contains much organic 
matter including stiff plant fibers of unknown affinities; 
no snails, lower contact abrupt. 

Clayey silt and fine sand, wet color: 2.SYNS/0 gray; 
dry color: 5Y6/l gray, compact, cohesive, calcareous, 
clayey silt, no organic matter of mollusk shells 
pres~nt, lower contact gradational. 

Till, wet color: 5Y4/l dark gray; dry color: 5Y6/1 
gray, very compact, clayey silt with pebbles and 
cobbles, no organic matter. Thickness unknown. 
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VIII 

2.5 meters 

VII 

0.3 meters 

VI 

0.5 meters 

V 

0.6 meters 

IV 
0.3 meters 

III 

0.5 meccrs 

II 

1.2 meters 

I 
? 
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LITHOLOGIC DESCRIPTION OF 
CORE C-Lk-2 

"Transitional", wet color: 2.SYS/2 grayish brown; 
dry color: 10YR8/l, silt-sized calcarc0us grains 
with organic matter and _g_liara sterns, pc0rly to 
moderately well compacted; contains deciduous 
leaf fragments and some snails. Lower contact 
rather abrupt. 

Gyttja (calcareous), wet color: 2.5Y4/2 dark grayish 
brown; dry color: 2.SYS/2 calcareous gyttja, "rubbery". 
Contains Chara oogonia, snails, and unident seeds. 
Lower contact abrupt. 

"Transitional" sediment (calcareous organic··rich 
silt), wet color: 2.SYS/2, grayish brown; dry color: 
2.5Y7/2 compact, rubbery, silt-sized Caco3 grains 
with organic matter; has crisscrossed µ2.ttcrn of 
Chara sterns on bedding plane; Fontinalis-likP plant 
present; many sn2ils. Lower contact abrupt. 

Gyttja, wet color: 5Y2/l black; dry color: SY3/l; 
very compact, noncalcareous, "rubbery", gyttja, 
no mollusk shells. Lower contact gradational. 

Calcareous gyttja, wet color: 2.5Y3/2 very dark 
brown, no snails, well compacted, lower cont~ct 
abrupt. 

Silt (organic-rich), wet color: 5Y4/2 olive gray; 
dry color: SYS/1, compact, calcareous, clayey silt, 
with nruch fin2 organic matter, lower contact 3brupt. 

Clayey silt, wet color: 5Y4/l dark gray; dry color: 
2.5Y5/2 compact cohesive, clayey silt; no organic 
matter, poorly calcareous, becoming slightly more 
calcareous toward base; ~nfossiliferous, lower 
contact gradational. 

Till, wet color: 3.SYNS/0 gray; dry color: 2.5Y2/2, 
very compact, clayey silt, water pebbles and cobbles; 
thickness unknown. 

-------·------------------------
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